Patents by Inventor Dirk Liemersdorf

Dirk Liemersdorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9991565
    Abstract: A sensor system for detecting a leak of a system component from an electrochemical storage system, in particular a lithium-ion battery. To determine a defect in the electrochemical storage system, the sensor system includes a reaction chamber containing a detection component, and a measuring device for determining a physical variable within the reaction chamber. The value of the physical variable is changeable by a chemical reaction of the system component with the detection component, so that a leak of the system component is detectable via a change in the value of the physical variable. Also described is a sensor element for such a sensor system, an electrochemical storage system having such a sensor system or sensor element, the use of such a sensor system or sensor element, and a mobile or stationary system, for example an electric vehicle, equipped with the sensor system, the sensor element, or the storage system.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 5, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Kathy Sahner, Jens Grimminger, Marcus Wegner, Dirk Liemersdorf
  • Patent number: 9709455
    Abstract: The invention relates to a method for localizing a defect in an electrochemical store (165). The method includes a step of controlling the temperature of a subarea (145, 150, 155, 160, 170) of the electrochemical store (165) to increase an internal pressure of the subarea (145, 150, 155, 160, 170), a step of detecting a measured value which represents an escape of a component from the subarea (145, 150, 155, 160, 170) occurring in response to the increased internal pressure of the subarea (145, 150, 155, 160, 170), and a step of localizing the defect in the subarea (145, 150, 155, 160, 170) when the measured value is in a predetermined relation to a comparison value.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: July 18, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Kathy Sahner, Jens Grimminger, Dirk Liemersdorf
  • Patent number: 9222911
    Abstract: A method for detecting at least one property of a gas in a measuring gas chamber, in particular for detecting at least one gas component of the gas. The at least one property is determined using at least one electrochemical measuring cell of a sensor element. Temperatures are detected at at least two different locations of the sensor element and used in determining the at least one property.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 29, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Dirk Liemersdorf, Benjamin Sillmann
  • Publication number: 20150132616
    Abstract: A method for triggering at least one safety function in the event of a safety-critical state of an electrochemical energy store includes: detecting the safety-critical state of the electrochemical energy store using a sensor signal which represents at least one detected state variable of the electrochemical energy store; generating a safety function signal based on the detected safety-critical state of the electrochemical energy store; and triggering the at least one safety function based on the safety function signal.
    Type: Application
    Filed: March 11, 2013
    Publication date: May 14, 2015
    Inventors: Kathy Sahner, Thomas Classen, Jens Grimminger, Bernd Schumann, Frank Baumann, Dirk Liemersdorf
  • Publication number: 20150132620
    Abstract: A sensor system for detecting a leak of a system component from an electrochemical storage system, in particular a lithium-ion battery. To determine a defect in the electrochemical storage system, the sensor system includes a reaction chamber containing a detection component, and a measuring device for determining a physical variable within the reaction chamber. The value of the physical variable is changeable by a chemical reaction of the system component with the detection component, so that a leak of the system component is detectable via a change in the value of the physical variable. Also described is a sensor element for such a sensor system, an electrochemical storage system having such a sensor system or sensor element, the use of such a sensor system or sensor element, and a mobile or stationary system, for example an electric vehicle, equipped with the sensor system, the sensor element, or the storage system.
    Type: Application
    Filed: March 5, 2013
    Publication date: May 14, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Kathy Sahner, Jens Grimminger, Marcus Wegner, Dirk Liemersdorf
  • Publication number: 20150090009
    Abstract: The invention relates to a method for localizing a defect in an electrochemical store (165). The method includes a step of controlling the temperature of a subarea (145, 150, 155, 160, 170) of the electrochemical store (165) to increase an internal pressure of the subarea (145, 150, 155, 160, 170), a step of detecting a measured value which represents an escape of a component from the subarea (145, 150, 155, 160, 170) occurring in response to the increased internal pressure of the subarea (145, 150, 155, 160, 170), and a step of localizing the defect in the subarea (145, 150, 155, 160, 170) when the measured value is in a predetermined relation to a comparison value.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 2, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Kathy Sahner, Jens Grimminger, Dirk Liemersdorf
  • Patent number: 8940144
    Abstract: A sensor element of a gas sensor for determining gas components in gas mixtures, having at least one electrochemical measuring cell which is formed by a ceramic substrate and electrodes placed thereon. The sensor element includes at least one interior chamber which is sealed in a gas-tight manner, in which at least one first internal electrode is positioned, which forms an electrochemical cell with each of a second and an additional electrode of the sensor element, one of the electrochemical cells being an electrochemical pump cell, and the second or other electrode being exposed to the measuring gas.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: January 27, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Liemersdorf, Thomas Classen, Benjamin Sillmann
  • Patent number: 8858779
    Abstract: A method for detecting a proportion of at least one gas species in a measurement gas space. A sensor element is used, having an oxygen reduction pumping cell for concentration of the gas species, a pumping cell connected downstream of the oxygen reduction pumping cell having pumping electrodes, and a gas-tight chamber. A pumping electrode may be exposed to gas from the measurement gas space which has been concentrated by the oxygen reduction pumping cell. A further pumping electrode is disposed in the gas-tight chamber. At least one measuring electrode is further disposed in the gas-tight chamber. The oxygen reduction pumping cell and the pumping cell are galvanically isolated. The method includes an initialization phase, and an accumulation phase.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 14, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Liemersdorf, Benjamin Sillmann, Berndt Cramer
  • Publication number: 20140072843
    Abstract: An electrochemical energy store, e.g., a lithium-ion battery, includes a cell chamber, in which at least one anode, at least one cathode, and an electrolyte, which is situated between the anode and the cathode, are situated, the cell chamber being separated from the external surroundings by a housing, and at least one detection substance for the detection of a leak of the housing being situated in the cell chamber. The energy store configuration allows a leak of the energy store to be detected in a simple way.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 13, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Dirk LIEMERSDORF, Frank BAUMANN, Bernd SCHUMANN, Jens GRIMMINGER, Thomas CLASSEN, Kathy SAHNER, Joerg THIELEN
  • Publication number: 20130220834
    Abstract: A method for detecting at least one property of a gas in a measuring gas chamber, in particular for detecting at least one gas component of the gas. The at least one property is determined using at least one electrochemical measuring cell of a sensor element. Temperatures are detected at at least two different locations of the sensor element and used in determining the at least one property.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 29, 2013
    Inventors: Dirk Liemersdorf, Benjamin Sillmann
  • Patent number: 8424366
    Abstract: In a method for operating a semiconductor gas sensor, the gas sensor including at least one gas-sensitive electrode, the method may provide for impression of a voltage sequence on the gas-sensitive electrode. The operation may take place in a measuring cycle which is subdivided into at least one initialization phase and at least one subsequent measuring phase, a first voltage sequence being impressed on the gas-sensitive electrode during the initialization phase, a second voltage sequence being impressed on the gas-sensitive electrode during the measuring phase, and the first voltage sequence differing from the second voltage sequence. A semiconductor gas sensor may be provided for implementing the method according to the invention, and a method may relate to the use of such a sensor.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 23, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Liemersdorf, Richard Fix
  • Publication number: 20120285838
    Abstract: A method for detecting a proportion of at least one gas species in a measurement gas space. A sensor element is used, having an oxygen reduction pumping cell for concentration of the gas species, a pumping cell connected downstream of the oxygen reduction pumping cell having pumping electrodes, and a gas-tight chamber. A pumping electrode may be exposed to gas from the measurement gas space which has been concentrated by the oxygen reduction pumping cell. A further pumping electrode is disposed in the gas-tight chamber. At least one measuring electrode is further disposed in the gas-tight chamber. The oxygen reduction pumping cell and the pumping cell are galvanically isolated. The method includes an initialization phase, and an accumulation phase.
    Type: Application
    Filed: October 21, 2010
    Publication date: November 15, 2012
    Inventors: Dirk Liemersdorf, Benjamin Sillmann, Berndt Cramer
  • Publication number: 20120006692
    Abstract: In a sensor element for a solid electrolyte gas sensor, comprising a gas-tight pumping chamber, a heater, a first pumping electrode arranged in the pumping chamber, and an at least second pumping electrode, an autonomous pumping cell is arranged as a gas inflow restrictor instead of a diffusion barrier. The autonomous pumping cell comprises an outer and an inner autonomous pumping electrode which are contacted or short-circuited from outside by means of a trimmable resistor.
    Type: Application
    Filed: February 11, 2010
    Publication date: January 12, 2012
    Applicant: ROBERT BOSCH GMBH
    Inventors: Dirk Liemersdorf, Berndt Cramer
  • Publication number: 20110314898
    Abstract: A sensor element of a gas sensor for determining gas components in gas mixtures, having at least one electrochemical measuring cell which is formed by a ceramic substrate and electrodes placed thereon. The sensor element includes at least one interior chamber which is sealed in a gas-tight manner, in which at least one first internal electrode is positioned, which forms an electrochemical cell with each of a second and an additional electrode of the sensor element, one of the electrochemical cells being an electrochemical pump cell, and the second or other electrode being exposed to the measuring gas.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 29, 2011
    Inventors: Dirk Liemersdorf, Thomas Classen, Benjamin Sillmann
  • Publication number: 20110132773
    Abstract: An apparatus for detecting at least one substance present in a fluid flow includes at least one field effect transistor which acts as a measuring sensor, and at least one field effect transistor which acts as a reference element, the field effect transistors each having at least one source electrode, one drain electrode, and one gate electrode. The gate electrode of the field effect transistor which acts as the measuring sensor is sensitive to the at least one substance to be detected, and the gate electrode of the field effect transistor which acts as the reference element is essentially insensitive to the at least one substance to be detected. The source electrode of one of the field effect transistors and the drain electrode of the other of the field effect transistors are connected to one another and to a signal line.
    Type: Application
    Filed: July 3, 2008
    Publication date: June 9, 2011
    Inventors: Dirk Liemersdorf, Richard Fix, Oliver Wolst, Alexander Martin, Martin Le-Huu
  • Publication number: 20100193375
    Abstract: In a method for operating a semiconductor gas sensor, the gas sensor including at least one gas-sensitive electrode, the method may provide for impression of a voltage sequence on the gas-sensitive electrode. The operation may take place in a measuring cycle which is subdivided into at least one initialization phase and at least one subsequent measuring phase, a first voltage sequence being impressed on the gas-sensitive electrode during the initialization phase, a second voltage sequence being impressed on the gas-sensitive electrode during the measuring phase, and the first voltage sequence differing from the second voltage sequence. A semiconductor gas sensor may be provided for implementing the method according to the invention, and a method may relate to the use of such a sensor.
    Type: Application
    Filed: May 16, 2008
    Publication date: August 5, 2010
    Inventors: Dirk Liemersdorf, Richard Fix