Patents by Inventor Dirk Sutter

Dirk Sutter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942752
    Abstract: A method for generating output laser pulses from input laser pulses includes causing the input laser pulses to temporally successively pass through an optical component with temperature-dependent power efficiency. The optical component is heated by the passing of the input laser pulses. The input laser pulses emerge from the optical component as output laser pulses. The method further includes calculating a current temperature or a current temperature difference of the optical component, or a temperature-dependent current parameter based on all preceding input laser pulses or output laser pulses that have contributed to the heating of the optical component, and setting a power of a current input laser pulse based on the calculated current temperature, or the calculated current temperature difference, or the calculated current parameter, so that an associated output laser pulse has a pulse energy that deviates from a predefined pulse energy by less than 5%.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: March 26, 2024
    Assignee: TRUMPF LASER GMBH
    Inventors: Jonathan Brons, Rainer Flaig, Dirk Sutter, Ivo Zawischa
  • Publication number: 20230387640
    Abstract: A method for generating output laser pulses from input laser pulses includes causing the input laser pulses to temporally successively pass through an optical component with temperature-dependent power efficiency. The optical component is heated by the passing of the input laser pulses. The input laser pulses emerge from the optical component as output laser pulses. The method further includes calculating a current temperature or a current temperature difference of the optical component, or a temperature-dependent current parameter based on all preceding input laser pulses or output laser pulses that have contributed to the heating of the optical component, and setting a power of a current input laser pulse based on the calculated current temperature, or the calculated current temperature difference, or the calculated current parameter, so that an associated output laser pulse has a pulse energy that deviates from a predefined pulse energy by less than 5%.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Inventors: Jonathan Brons, Rainer Flaig, Dirk Sutter, Ivo Zawischa
  • Publication number: 20230170660
    Abstract: A laser system for nonlinear pulse compression includes a laser source configured to generate laser pulses with a pulse energy of at least 50 mJ, a spectral broadening device for spectrally broadening the high-energy laser pulses using self-phase modulation, and a compression device including a grating compressor having at least two diffraction gratings and configured to compress the spectrally broadened high-energy laser pulses. The laser system is configured to generate a pulse duration of the high-energy laser pulses of less than 100 fs.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 1, 2023
    Inventors: Jonathan Brons, Raphael Scelle, Dominik Bauer, Aleksander Budnicki, Alexander Killi, Dirk Sutter, Peter Kroetz
  • Patent number: 10998688
    Abstract: A fiber amplification system is provided for amplifying a laser pulse signal, e.g., an oscillator signal of an oscillator device. The fiber amplification system includes a fiber pre-amplification system having a short, fundamental-mode and step-index fiber configured to pre-amplify the laser pule signal to generate a seed signal and a main amplification system having a large core fiber configured to amplify the seed signal. The short, fundamental-mode step-index fiber can have a length no longer than about 30 cm, and a mode field diameter no less than about 30 ?m, e.g., in a range from 30 ?m to 60 ?m, as well as a high doping concentration needed to provide an absorption length no more than about 30 cm, for providing the seed signal for the large core fiber with low non-linearity.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: May 4, 2021
    Assignee: TRUMPF LASER GMBH
    Inventors: Dirk Sutter, Alexander Killi, Aleksander Budnicki, Florian Jansen
  • Publication number: 20190036292
    Abstract: A fiber amplification system is provided for amplifying a laser pulse signal, e.g., an oscillator signal of an oscillator device. The fiber amplification system includes a fiber pre-amplification system having a short, fundamental-mode and step-index fiber configured to pre-amplify the laser pule signal to generate a seed signal and a main amplification system having a large core fiber configured to amplify the seed signal. The short, fundamental-mode step-index fiber can have a length no longer than about 30 cm, and a mode field diameter no less than about 30 ?m, e.g., in a range from 30 ?m to 60 ?m, as well as a high doping concentration needed to provide an absorption length no more than about 30 cm, for providing the seed signal for the large core fiber with low non-linearity.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 31, 2019
    Inventors: Dirk Sutter, Alexander Killi, Aleksander Budnicki, Florian Jansen
  • Patent number: 9331451
    Abstract: The disclosure relates to a pump radiation arrangement comprising: a pump radiation source for producing pump radiation, a means for stabilizing the wavelength of the pump radiation source and a laser-active medium through which the pump radiation passes in a bidirectional manner. The pump radiation arrangement also has a retro-reflector for reflecting pump radiation which is not absorbed by the laser-active medium back to the pump radiation source and a wavelength-selective element for preventing a wavelength destabilization of the pump radiation source by filtering out undesirable spectral portions of pump radiation which is not absorbed by the laser-active medium. The invention also relates to an associated method for pumping a laser-active medium.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 3, 2016
    Assignee: TRUMPF LASER GMBH
    Inventors: Dirk Sutter, Alexander Killi, Jochen Kleinbauer, Yufeng Li
  • Publication number: 20150139263
    Abstract: The disclosure relates to a pump radiation arrangement comprising: a pump radiation source for producing pump radiation, a means for stabilizing the wavelength of the pump radiation source and a laser-active medium through which the pump radiation passes in a bidirectional manner. The pump radiation arrangement also has a retro-reflector for reflecting pump radiation which is not absorbed by the laser-active medium back to the pump radiation source and a wavelength-selective element for preventing a wavelength destabilization of the pump radiation source by filtering out undesirable spectral portions of pump radiation which is not absorbed by the laser-active medium. The invention also relates to an associated method for pumping a laser-active medium.
    Type: Application
    Filed: September 30, 2014
    Publication date: May 21, 2015
    Inventors: Dirk Sutter, Alexander Killi, Jochen Kleinbauer, Yufeng Li
  • Publication number: 20120176666
    Abstract: This invention relates generally to laser systems that produce UV light and their methods of use. The phase matching of the conversion process has a broad temperature bandwidth so that precise temperature stabilization is not necessary to obtain a stable efficiency and a non-deformed laser beam with fast power modulation at high energies.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 12, 2012
    Applicant: TRUMPF LASER GMBH + CO. KG
    Inventors: Dirk Sutter, Ivo Zawischa, Chuong Tan
  • Patent number: 7649667
    Abstract: A controllable Pockels cell system has a switching unit that can apply voltage to the Pockels cell. The Pockels cell system also features a delay unit that enables setting of a precise time when voltage is applied or removed from the Pockels cell. This allows displacing in time the voltage pulse applied to the Pockels cell, in this manner also displacing in time the transmission pulse of the Pockels cell with an analyzer located behind the Pockels cell. Thus it is possible to individually control the amplitude of selected laser pulses. The switching unit can either be a simple push-pull circuit or a bridge circuit made from two push-pull circuits.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: January 19, 2010
    Assignees: Trumpf Laser GmbH + Co., KG, BME Messgeraete Entwicklung KG
    Inventors: Thorald Bergmann, Rainer Flaig, Dirk Sutter
  • Publication number: 20080018977
    Abstract: A controllable Pockels cell system has a switching unit that can apply voltage to the Pockels cell. The Pockels cell system also features a delay unit that enables setting of a precise time when voltage is applied or removed from the Pockels cell. This allows displacing in time the voltage pulse applied to the Pockels cell, in this manner also displacing in time the transmission pulse of the Pockels cell with an analyzer located behind the Pockels cell. Thus it is possible to individually control the amplitude of selected laser pulses. The switching unit can either be a simple push-pull circuit or a bridge circuit made from two push-pull circuits.
    Type: Application
    Filed: December 22, 2006
    Publication date: January 24, 2008
    Applicants: BME MESSGERAETE ENTWICKLUNG KG, TRUMPF LASER GMBH + CO. KG
    Inventors: Thorald Bergmann, Rainer Flaig, Dirk Sutter
  • Patent number: 7027477
    Abstract: An optical system includes a diode pump source and a thin disk gain media. The thin disk gain media has first and second surfaces and is made of a material with an anisotropic thermal expansion. At least one of the first and second surfaces is a cooling surface. The thin disk gain media is cut at an angle to provide substantially the same thermal expansion coefficient in all directions lying in a plane that is parallel to the cooling surface. An optical coupler is positioned between the diode pump source and the thin disk gain media to direct an output from the diode pump source to the thin disk gain media.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: April 11, 2006
    Assignee: Spectra Physics Inc.
    Inventors: Dirk Sutter, James D. Kafka
  • Patent number: 7003011
    Abstract: An optical system has a high power diode pump source and a thin disk gain media. An optical coupler is positioned between the diode pump source and the thin disk gain media. The optical coupler produces a beam with a large numerical aperture incident on the thin disk gain media.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: February 21, 2006
    Assignee: Spectra Physics, Inc.
    Inventors: James D. Kafka, Dirk Sutter
  • Patent number: 6891876
    Abstract: An optical system has a diode pump source, and a gain media made of a material with an anisotropic absorption. The gain media is cut at an angle to produce substantially polarization-independent absorption of a pump beam. An optical coupler is positioned between the diode pump source and the gain media. The optical coupler produces a pump beam that has substantially equal amounts of pump power along any two orthogonal axis that are orthogonal to the pump beam in the gain medium. The wavelength range allowed for the pump source is extended.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: May 10, 2005
    Assignee: Spectra Physics, Inc.
    Inventors: Dirk Sutter, James D. Kafka
  • Publication number: 20040052283
    Abstract: An optical system includes a diode pump source and a thin disk gain media. The thin disk gain media has first and second surfaces and is made of a material with an anisotropic thermal expansion. At least one of the first and second surfaces is a cooling surface. The thin disk gain media is cut at an angle to provide substantially the same thermal expansion coefficient in all directions lying in a plane that is parallel to the cooling surface. An optical coupler is positioned between the diode pump source and the thin disk gain media to direct an output from the diode pump source to the thin disk gain media.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 18, 2004
    Inventors: Dirk Sutter, James D. Kafka
  • Publication number: 20040042524
    Abstract: An optical system has a high power diode pump source and a thin disk gain media. An optical coupler is positioned between the diode pump source and the thin disk gain media. The optical coupler produces a beam with a large numerical aperture incident on the thin disk gain media.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: James D. Kafka, Dirk Sutter
  • Publication number: 20040042522
    Abstract: An optical system has a diode pump source, and a gain media made of a material with an anisotropic absorption. The gain media is cut at an angle to produce substantially polarization-independent absorption of a pump beam. An optical coupler is positioned between the diode pump source and the gain media. The optical coupler produces a pump beam that has substantially equal amounts of pump power along any two orthogonal axis that are orthogonal to the pump beam in the gain medium. The wavelength range allowed for the pump source is extended.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Dirk Sutter, James D. Kafka