Patents by Inventor Diwakar Kedlaya

Diwakar Kedlaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210142984
    Abstract: Exemplary semiconductor processing chambers may include an inlet manifold defining a central aperture. The inlet manifold may also define a first channel and a second channel, and each of the channels may extend through the inlet manifold radially outward of the central aperture. The chambers may also include a gasbox characterized by a first surface facing the inlet manifold and a second surface opposite the first. The gasbox may define a central aperture aligned with the central aperture of the inlet manifold. The gasbox may define a first annular channel in the first surface extending about the central aperture of the gasbox and fluidly coupled with the first channel of the inlet manifold. The gasbox may define a second annular channel extending radially outward of the first and fluidly coupled with the second channel of the inlet manifold. The second annular channel may be fluidly isolated from the first.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 13, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Fang Ruan, Diwakar Kedlaya, Truong Van Nguyen, Mingle Tong, Sherry L. Mings, Venkata Sharat Chandra Parimi
  • Publication number: 20210134568
    Abstract: Semiconductor processing systems and methods are disclosed. An exemplary semiconductor processing system may include a semiconductor processing chamber containing a solid boron deposit, a remote plasma unit disposed upstream of the semiconductor processing chamber, and an optical absorption sensor disposed downstream of the semiconductor processing chamber. The remote plasma unit may be configured to generate plasma effluents from a fluorine-containing precursor. The optical absorption sensor may be configured to measure within an outflow from the semiconductor processing chamber a level of a boron-containing compound produced via a reaction between at least a portion of the solid boron deposit and the plasma effluents flowed from the remote plasma unit into the semiconductor processing chamber.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 6, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Fang Ruan, Diwakar Kedlaya
  • Publication number: 20200335339
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a first mandrel layer on a material layer disposed on a substrate. A first spacer layer is conformally formed on sidewalls of the first mandrel layer, wherein the first spacer layer comprises a doped silicon material. The first mandrel layer is selectively removed while keeping the first spacer layer. A second spacer layer is conformally formed on sidewalls of the first spacer layer and selectively removing the first spacer layer while keeping the second spacer layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: October 22, 2020
    Inventors: Tzu-shun YANG, Rui CHENG, Karthik JANAKIRAMAN, Zubin HUANG, Diwakar KEDLAYA, Meenakshi GUPTA, Srinivas GUGGILLA, Yung-chen LIN, Hidetaka OSHIO, Chao LI, Gene LEE
  • Patent number: 7795559
    Abstract: A turbulence-controlled vacuum debris removal subsystem safely exhausts particles ejected during photoablation. Nested interconnected chambers provide diminishing sweeping gas partial pressure and diminishing turbulence, ejecting particles from the ablation beam path between pulses, without compromising continuing particle conductance. Removal rate (debris generation rate) depends on conductance and particle sizes. The chambers interconnect through metering holes which enable optimization of partial pressure differentials. Controlled flow accomplishes debris removal, reducing turbulence of the mixture of debris and sweeping gases. A preferred embodiment uses a nest of concentric chambers, providing a clear light path. Another preferred embodiment uses orifices on chamber faces for removal and forming an envelope of gas around the processing region for dynamically containing the ejected particulate matter from the ablation site to the exhaust.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 14, 2010
    Assignee: Anvik Corporation
    Inventors: Leszek Wojcik, Diwakar Kedlaya, Kanti Jain, Sivarama Krishna Kuchibhotla, Arun Paneerselvam