Patents by Inventor Dominick J. Frustaci

Dominick J. Frustaci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9071221
    Abstract: A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: June 30, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Kishore Kumar Kondabatni, Joseph E. Spaulding, Dominick J. Frustaci, Warren S. Dabney, Holly Noelle Moschiano
  • Publication number: 20150134039
    Abstract: An elevated feedthrough is attachable to a top or a side of an active implantable medical device. The feedthrough includes a conductive ferrule and a dielectric substrate. The dielectric substrate is defined as comprising a body fluid side and a device side disposed within the conductive ferrule. The dielectric substrate includes a body fluid side elevated portion generally raised above the conductive ferrule. At least one via hole is disposed through the dielectric substrate from the body fluid side to the device side. A conductive fill is disposed within the at least one via hole forming a hermetic seal and electrically conductive between the body fluid side and the device side. A leadwire connection feature is on the body fluid side electrically coupled to the conductive fill and disposed adjacent to the elevated portion of the dielectric substrate.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Richard L. Brendel, Jason Woods, Steven W. Winn, Dominick J. Frustaci, Bruehl E. Truex, Donald H. Hickel, JR.
  • Patent number: 9014808
    Abstract: An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
    Type: Grant
    Filed: February 23, 2014
    Date of Patent: April 21, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Robert S. Johnson, Dominick J. Frustaci, Warren S. Dabney, Keith W. Seitz, Thomas Marzano, John E. Roberts, William C. Thiebolt, Christopher M. Williams, Buehl E. Truex
  • Patent number: 8996126
    Abstract: A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Kishore Kumar Kondabatni, Joseph Spaulding, Dominick J. Frustaci, Warren S. Dabney, Holly Noelle Moschiano
  • Patent number: 8938309
    Abstract: An elevated feedthrough is attachable to a top or a side of an active implantable medical device. The feedthrough includes a conductive ferrule and a dielectric substrate. The dielectric substrate is defined as comprising a body fluid side and a device side disposed within the conductive ferrule. The dielectric substrate includes a body fluid side elevated portion generally raised above the conductive ferrule. At least one via hole is disposed through the dielectric substrate from the body fluid side to the device side. A conductive fill is disposed within the at least one via hole forming a hermetic seal and electrically conductive between the body fluid side and the device side. A leadwire connection feature is on the body fluid side electrically coupled to the conductive fill and disposed adjacent to the elevated portion of the dielectric substrate.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: January 20, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Keith W. Seitz, Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Richard L. Brendel, Jason Woods, Steven W. Winn, Dominick J. Frustaci, Buehl E. Truex, Donald Hickel, Jr.
  • Patent number: 8855768
    Abstract: An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 7, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Dominick J. Frustaci, Warren S. Dabney, Robert A. Stevenson, Keith W. Seitz, Christine A. Frysz, Thomas Marzano, Richard L. Brendel, John E. Roberts, William Thiebolt, Christopher M. Williams, Jason Woods, Buehl E. Truex
  • Patent number: 8792987
    Abstract: Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: July 29, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Barry C. Muffoletto, Robert W. Siegler, Steven W. Winn, Thomas A. Skwara, Dominick J. Frustaci
  • Publication number: 20140168850
    Abstract: An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
    Type: Application
    Filed: February 23, 2014
    Publication date: June 19, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Robert S. Johnson, Dominick J. Frustaci, Warren S. Dabney, Keith W. Seitz, Thomas Marzano, John E. Roberts, William C. Thiebolt, Christopher M. Williams, Buehl E. Truex
  • Publication number: 20140161973
    Abstract: A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Greatbatch Ltd.
    Inventors: Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Robert A. Stevenson, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 8653384
    Abstract: A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 18, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Robert A. Stevenson, Ricahrd L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20130317345
    Abstract: An implantable cardioverter defibrillator includes a communication interface operable to receive a communication signal from an external programmer. The communication signal includes a command to switch the ICD from a first mode to a second mode. A processor is in electrical communication with the communication interface and configured to switch the ICD between the first and second modes. A battery is configured to supply low DC voltage. A converter is configured to convert the low DC voltage to a high DC voltage. An energy storage capacitor is electrically coupled to the converter and configured to store a therapeutic energy or high DC voltage including at least 15 joules. The second mode includes activating the converter to convert the low DC voltage to the high DC voltage and storing the therapeutic energy or at least 15 joules within the energy storage capacitor during a period of time of the second mode.
    Type: Application
    Filed: August 4, 2013
    Publication date: November 28, 2013
    Applicant: Greatbatch Ltd.
    Inventors: Dominick J. Frustaci, Barry C. Muffoletto, Robert A. Stevenson
  • Patent number: 8442644
    Abstract: Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 14, 2013
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Barry C. Muffoletto, Robert W. Siegler, Steven W. Winn, Thomas A. Skwara, Dominick J. Frustaci
  • Publication number: 20130046354
    Abstract: An implantable cardioverter defibrillator includes a communication interface operable to receive a communication signal from an external programmer. The communication signal includes a command to switch the ICD from a first mode to a second mode. A processor is in electrical communication with the communication interface and configured to switch the ICD between the first and second modes. A battery is configured to supply low DC voltage. A converter is configured to convert the low DC voltage to a high DC voltage. An energy storage capacitor is electrically coupled to the converter and configured to store a therapeutic energy or high DC voltage including at least 15 joules. The second mode includes activating the converter to convert the low DC voltage to the high DC voltage and storing the therapeutic energy or at least 15 joules within the energy storage capacitor during a period of time of the second mode.
    Type: Application
    Filed: August 18, 2012
    Publication date: February 21, 2013
    Applicant: Greatbatch Ltd.
    Inventors: Dominick J. Frustaci, Barry C. Muffoletto, Robert A. Stevenson
  • Publication number: 20120256704
    Abstract: An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
    Type: Application
    Filed: February 29, 2012
    Publication date: October 11, 2012
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Dominick J. Frustaci, Warren S. Dabney, Robert A. Stevenson, Keith W. Seitz, Christine A. Frysz, Thomas Marzano, Richard L. Brendel, John E. Roberts, William Thiebolt, Christopher M. Williams, Jason Woods, Buehl E. Truex
  • Publication number: 20120253340
    Abstract: A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.
    Type: Application
    Filed: February 21, 2012
    Publication date: October 4, 2012
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Kishore Kumar Kondabatni, Joseph Spaulding, Dominick J. Frustaci, Warren S. Dabney, Holly Noelle Moschiano
  • Publication number: 20100125312
    Abstract: Deep brain electrodes are remotely sensed and activated by means of a remote active implantable medical device (AIMD). In a preferred form, a pulse generator is implanted in the pectoral region and includes a hermetic seal through which protrudes a conductive leadwire which provides an external antenna for transmission and reception of radio frequency (RF) pulses. One or more deep brain electrode modules are constructed and placed which can transmit and receive RF energy from the pulse generator. An RF telemetry link is established between the implanted pulse generator and the deep brain electrode assemblies. The satellite modules are configured for generating pacing pulses for a variety of disease conditions, including epileptic seizures, Turrets Syndrome, Parkinson's Tremor, and a variety of other neurological or brain disorders.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 20, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Barry C. Muffoletto, Robert W. Siegler, Steven W. Winn, Thomas A. Skwara, Dominick J. Frustaci
  • Patent number: 6767670
    Abstract: An alkali metal/solid cathode electrochemical cell, such as of a Li/SVO couple, having the cathode material supported on a titanium current collector screen coated with a carbonaceous material is described. The thusly-coated titanium current collector provides the cell with higher rate capability in comparison to cells of a similar chemistry having the cathode active material contacted to an uncoated titanium current collector.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: July 27, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: William M. Paulot, Mark J. Roy, Gary L. Freitag, Dominick J. Frustaci, Hong Gan, Esther S. Takeuchi
  • Patent number: 6610443
    Abstract: The present invention is directed to an electrochemical cell having plate electrodes housed inside mating “clam shell” casing components. When mated together, the casing components are form-fitting with respect to the internal battery structure so as to reduce the overall size of the electrochemical package. A one piece header containing both a glass-to-metal seal opening for a terminal lead and an electrolyte fill opening is used in conjunction with the clam shell casing.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: August 26, 2003
    Assignee: Wilson Greatbatch Ltd.
    Inventors: William M. Paulot, Dominick J. Frustaci, Kenneth L. Grubb, Harvey A. Hornung, II
  • Publication number: 20030118909
    Abstract: An alkali metal/solid cathode electrochemical cell, such as of a Li/SVO couple, having the cathode material supported on a titanium current collector screen coated with a carbonaceous material is described. The thusly-coated titanium current collector provides the cell with higher rate capability in comparison to cells of a similar chemistry having the cathode active material contacted to an uncoated titanium current collector.
    Type: Application
    Filed: November 14, 2002
    Publication date: June 26, 2003
    Inventors: William M. Paulot, Mark J. Roy, Gary L. Freitag, Dominick J. Frustaci, Hong Gan, Esther S. Takeuchi
  • Patent number: 6461771
    Abstract: The basket weave structures has a lattice construction surrounded by a frame and comprising first strand structures intersecting second strand structures to provide a plurality of diamond-shaped openings or interstices bordered by the strands. The strand structures intersect or join with each other at junctions thereby forming the current collector as an integral unit.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: October 8, 2002
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Christine A. Frysz, Dominick J. Frustaci, Joseph M. Probst, William C. Thiebolt, III, William M. Paulot