Patents by Inventor Dominik Paul

Dominik Paul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11029383
    Abstract: A method for operating a magnetic resonance device includes using an acquisition technique using a plurality of coil elements of a transmit and/or receive coil in parallel. For each coil element, a sensitivity map describing the spatial sensitivity of the respective coil element is acquired at the start of the acquisition procedure and used in the reconstruction of a magnetic resonance image dataset from the magnetic resonance data. Magnetic resonance data of the individual coil elements is thus merged. Reference information indicating the position of the patient and/or of the coil elements is measured at the start of the examination procedure. Comparison information supplementary thereto is measured during the acquisition procedure. A reacquisition of at least a portion of the sensitivity maps is performed if at least one recalibration criterion describing a deviation exceeding a threshold value is fulfilled in a comparison of the comparison data with the reference data.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 8, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Patent number: 11029382
    Abstract: Techniques are described for generating an MR image of an object using a multi spin-echo based imaging sequence with a plurality of k space segments using a preparation pulse. The technique included acquiring a first k-space dataset of the object using a first echo time and a first delay after the preparation pulse before the several spin-echoes are acquired. The technique further includes acquiring a second k space dataset of the object using a second echo time and a second delay after the preparation pulse, with at least one of the second echo time and the second delay time being different from the corresponding first echo time and the first delay time, generating a combined k space, and generating the MR image based on the combined k space dataset.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 8, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul, Mario Zeller
  • Patent number: 11016162
    Abstract: In a method and magnetic resonance apparatus for generating at least one combination image dataset, a first image dataset is acquired with a turbo spin echo sequence, wherein the echo signals are timed so that the spins of two spin species in the region to be examined are in-phase. A second image dataset is acquired with a turbo spin echo sequence, wherein the echo signals are timed so that the spins of two spin species in the region to be examined have opposed phase. The first image dataset and the second image dataset are combined to form a combination image.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 25, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Patent number: 11016157
    Abstract: A method and system for suppressing metal artifacts in magnetic resonance (MR) images of slices of a patient containing a metallic implant. The method and system can use a Slice Encoding for Metal Artifact Correction (SEMAC) sequence. In the method and system, MR data of each slice is fully sampled in k-space in a reference region located in a center of k-space in a phase-encoding direction and a central section in a slice-selection direction. The MR-data of each slice outside the reference region can be undersampled in k-space. The fully sampled MR data from the reference regions of each slice can be combined to generate a reference data set for reconstructing an MR image of each slice.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 25, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Flavio Carinci, Mario Zeller
  • Patent number: 11016158
    Abstract: The disclosure relates to the automatic determination of correction factor values for producing MR images using a magnetic resonance system. A plurality of MR images is produced, wherein each MR image is produced using parameters with parameter values and using correction factors with correction factor values. In order to produce the MR images, MR data of the same examination object is acquired under the same external boundary conditions. The MR images are evaluated automatically in respect of artifacts in the respective MR image, in order to determine the MR image with the least artifacts among the MR images. The correction factor values are determined as those correction factor values which have been used to produce the MR image with the least artifacts. The parameters determine a sequence, with which the MR data is acquired for producing the MR images. The correction factors reduce influences which influence the acquisition of the MR data.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 25, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Publication number: 20210149006
    Abstract: A method for acquiring a magnetic resonance data set of an object under examination by a magnetic resonance system using a scan sequence is provided. The scan sequence includes a succession of sequence blocks, and in each sequence block, there is at least one sub-block including an excitation section and/or a detection section. An excitation section includes at least one excitation pulse, and in a detection section, an echo signal or an echo train is acquired as a scan signal. At least one item of motion information is provided for each sub-block. The motion information contains information about a movement of the object under examination within a duration of the sub-block. Some of the sub-blocks are automatically repeated. At least the sub-blocks having motion information that exceeds a threshold value are repeated. The threshold value defines a motion amplitude.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 20, 2021
    Inventors: Daniel Nicolas Splitthoff, Tobias Kober, Randall Kroeker, Daniel Przioda, Dominik Paul
  • Patent number: 10996307
    Abstract: In a magnetic resonance tomography (MRT) apparatus and operating method, a field of view for imaging a target object is acquired. A relative position of this field of view in relation to a receiving space of the MRT scanner, in which the target object is received, is then automatically determined. A radio-frequency (RF) pulse to be used by the MRT scanner for imaging the target object is then automatically adjusted depending on this relative position. An excitation angle produced in the field of view by the RF pulse is changed compared to the use of the corresponding unadjusted RF pulse.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 4, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, George William Ferguson, Michael Koehler, Dieter Ritter, Dominik Paul
  • Publication number: 20210123995
    Abstract: A system and method for performing a measuring sequence by a magnetic resonance device for examining a patient is provided. The performance of the measuring sequence includes a processing of segments. If at least one determined patient load value exceeds a predetermined limit value, the processing of the measuring sequence for the time frame of exceeding the patient load value is interrupted. The determination of the at least one patient load value includes a detection of a movement of a patient into a changed pose, an adjustment of at least one following segment to the changed pose of the patient, and a determination of at least one patient load value for the adjusted at least one following segment.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 29, 2021
    Inventor: Dominik Paul
  • Patent number: 10977838
    Abstract: Generating a magnetic resonance image dataset includes providing a raw dataset that has been acquired such that the raw dataset is spatially and/or temporally undersampled. A regularization parameter is determined in an automated manner, and an image dataset is generated from the raw dataset using the regularization parameter in a compressed sensing technique.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 13, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Ralf Kartäusch, Dominik Paul, Flavio Carinci
  • Publication number: 20210093222
    Abstract: Accelerated acquisition of scan data by means of magnetic resonance to enable short echo times so that scan data of substances can also be acquired with a transversal relaxation time.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 1, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Nadine Dispenza, Ralf Kartaeusch, Dominik Paul, Manuel Stich, Mario Zeller
  • Publication number: 20210059558
    Abstract: Techniques are disclosed for positioning a patient couch in a patient receiving area of a magnetic resonance device for a magnetic resonance examination, which includes starting an introduction of the patient couch into the patient receiving area, acquiring monitoring data within an acquisition area of at least one sensor unit by means of the at least one sensor unit during the introduction of the patient couch into the patient receiving area, evaluating the monitoring data with respect to a selected area of an examination object and/or a selected area of the patient couch, and positioning the patient couch within the patient receiving area in dependence on an acquisition of the selected area of the examination object and/or the selected area of the patient couch in the monitoring data.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Mario Zeller, Dominik Paul
  • Patent number: 10928466
    Abstract: In a magnetic resonance apparatus and a method for operation thereof, at least one electrical operating value of at least one predetermined component of the apparatus is captured and, as a function of the at least one operating value, at least one coil operating value of a transmitting coil arrangement of the magnetic resonance apparatus is controlled for the purpose of limiting a B1 value.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Wolfgang Bielmeier, Gerhard Brinker, Swen Campagna, Bernd Erbe, Matthias Gebhardt, Juergen Nistler, Dominik Paul, Carsten Prinz, Gudrun Ruyters, Stephan Stoecker, Markus Vester
  • Patent number: 10928474
    Abstract: In order to optimize magnetic resonance (MR) images in spin echo-based imaging, MR raw data are acquired by applying a static magnetic field, an excitation pulse, a refocusing pulse, and an RF pulse at the same time point as an echo elicited by the pulses with the result that the magnetization in the negative z-direction is deflected by a flip angle. The flip angle is selected such that, given a specified repetition time of the excitation pulse, a predetermined contrast is provided for two specified tissue types of the subject to be imaged. An MR image is reconstructed from the acquired MR raw data.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Hans-Peter Fautz, Dominik Paul
  • Patent number: 10921411
    Abstract: A combined dataset can be formed from partial datasets acquired at different positions of a patient support with a magnetic resonance device. The partial datasets can be of an anatomical region of a patient delimited perpendicularly to a longitudinal direction within an acquisition region. In a method for correcting the combined dataset formed from the partial datasets, for slices of a slice stack in the longitudinal direction of the combined dataset, information describing geometry of the anatomical region and/or an anatomical feature of the anatomical region is determined. For at least one slice group including adjacent slices, the geometry information is compared to detect one or more discontinuities. For at least one discontinuity of the one or more discontinuities satisfying a correction criterion, the combined dataset is corrected as a function of the geometry information to eliminate or reduce the at least one discontinuity.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 16, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Publication number: 20210025957
    Abstract: A method is provided for generating a signal-to-noise improved magnetic resonance (MR) image of an object under examination in an MR system using a compressed sensing technology. The method includes determining a first MR signal data set of the object under examination in which a corresponding k-space is randomly subsampled; determining a location dependent sensitivity map for each of at least one receiving coil used to detect MR signals of the first MR signal data set in the location where the object under examination is located; and determining the MR image using an optimization process of the compressed sensing technology in which a location dependent regularization parameter is used, wherein the location dependent regularization parameter is determined based on the location dependent sensitivity map.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 28, 2021
    Inventors: Ralf Kartäusch, Dominik Paul, Mario Zeller
  • Publication number: 20200388008
    Abstract: The disclosure relates to a method for correcting image data acquired by a magnetic resonance device, a magnetic resonance device, and a computer program product. According to the method, first navigator data, image data, and second navigator data are acquired. Moreover, temperature values of the magnetic resonance device are determined. The image data is corrected based on the first navigator data, the second navigator data, and the temperature values.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 10, 2020
    Inventors: Michael Köhler, Dominik Paul, Mario Zeller
  • Publication number: 20200371180
    Abstract: Techniques are disclosed for recording magnetic resonance data of an examination object with a magnetic resonance device. A magnetic resonance sequence is used to record the magnetic resonance data from at least two slices of a slice stack, and at least two temporally separate radio frequency pulses are output within an excitation time frame. A slice thickness of the slices, which is increased by an enlargement factor that is greater than one compared with a nominal slice thickness, is used for at least one, but not all, of the radio frequency pulses. The enlargement factor is selected as a function of a distance value describing the distance between two adjacent slices of the slice stack, such that the increased slice thickness does not result in the resulting excitation region of a slice extending into the adjacent slice.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul, Mario Zeller
  • Patent number: 10838031
    Abstract: In a magnetic resonance (MR) method and apparatus, first and second MR data are acquired from respective echo trains with gradient moments of one echo train being in a sequence that is an inversion of at least a portion of the sequence of gradient moments in the second echo train. The MR signals are acquired from at least two substances in a volume of a subject, so that the relaxation of the respective nuclear spins influences the manner by which the first and second data are entered into k-space, so that when an image is reconstructed, the filter effect induced by such relaxation is compensated for.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: November 17, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Patent number: 10823803
    Abstract: In a method for reconstructing contrast levels from magnetic resonance (MR) acquisitions using a parallel acquisition (PAT) technique, MR raw data for at least two contrast levels are generated or acquired, the raw data includes reference lines. Reference line images are reconstructed from the reference lines of the MR raw data for at least two of the contrast levels. A histogram analysis is implemented on the basis of the reference line images. A PAT reconstruction of image representations of the different contrast levels is implemented, wherein the decision as to which reference lines are used for the PAT reconstruction being made on the basis of the histogram analysis.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul
  • Patent number: 10823802
    Abstract: In a method and computer for creating a pulse sequence for controlling a magnetic resonance (MR) tomography system to generate image data, raw MR data are acquired by exciting different transverse magnetizations in a number of sub-volumes of the subject, with a sequence of pulse iterations being executed that each prepare, excite and read out sub-volumes. The pulse iterations are designed so that a readout occurs when the pulse sequence is applied between a preparation of two spatially directly adjacent sub-volumes.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller