Patents by Inventor DON L. DEVOE

DON L. DEVOE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11786899
    Abstract: A microfluidic device including at least one channel in fluid communication with a sample trap array. Specifically, the configuration and geometry of the trap arrays according to the present invention allows for performing sample digitization that supports passive self-discretization within the sample traps without the need for any external flow control or actuation. Geometrical parameters defining the sample traps, including the trap width and the trap depth, are selected to optimize self-filling of the sample traps. Reagents are incorporated into the sample traps during device fabrication to allow for performing multiplexed reactions within the sample traps.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 17, 2023
    Assignee: University of Maryland, College Park
    Inventors: Don L. DeVoe, Alex Sposito
  • Patent number: 11780984
    Abstract: Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: October 10, 2023
    Assignee: University of Maryland, College Park
    Inventors: Eric L. Kendall, Erik Wienhold, Omid Rahmanian, Don L. Devoe
  • Publication number: 20200353460
    Abstract: Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
    Type: Application
    Filed: June 8, 2020
    Publication date: November 12, 2020
    Inventors: Eric L. KENDALL, Erik WIENHOLD, Omid RAHMANIAN, Don L. DEVOE
  • Patent number: 10675618
    Abstract: Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 9, 2020
    Assignee: University of Maryland, College Park
    Inventors: Eric L. Kendall, Erik Wienhold, Omid Rahmanian, Don L. Devoe
  • Publication number: 20180214873
    Abstract: A microfluidic device including at least one channel in fluid communication with a sample trap array. Specifically, the configuration and geometry of the trap arrays according to the present invention allows for performing sample digitization that supports passive self-discretization within the sample traps without the need for any external flow control or actuation. Geometrical parameters defining the sample traps, including the trap width and the trap depth, are selected to optimize self-filling of the sample traps. Reagents are incorporated into the sample traps during device fabrication to allow for performing multiplexed reactions within the sample traps.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 2, 2018
    Applicant: University of Maryland, College Park
    Inventors: Don L. DeVoe, Alex Sposito
  • Publication number: 20150321191
    Abstract: Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
    Type: Application
    Filed: March 27, 2015
    Publication date: November 12, 2015
    Applicant: UNIVERSITY OF MARYLAND
    Inventors: Eric L. KENDALL, Erik WEINHOLD, Omid RAHMANIAN, Don L. DEVOE
  • Publication number: 20130168885
    Abstract: A device and method for the formation of vesicles is disclosed herein. The device comprises a fluid introduction zone and a vesicle formation zone. The fluid introduction zone comprises a first inlet and a second inlet configured and disposed to provide parallel flow of an outer flow stream, flowing from the first inlet, sheathing an inner flow stream, flowing from the second inlet. The vesicle formation zone is configured and disposed to receive the parallel flow of the outer flow stream sheathing the inner flow stream and configured for a controlled and substantially uniform dispersion of an organic material, flowing in the inner flow stream, at a plane perpendicular to the vesicle formation zone.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 4, 2013
    Inventors: DONNA M. OMIATEK, RENEE R. HOOD, FRANCISCO JAVIER ATENCIA-FERNANDEZ, DON L. DEVOE, WYATT N. VREELAND