Patents by Inventor Don Mark Lipkin

Don Mark Lipkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150174838
    Abstract: A turbine component patch delivery system can include a compressed gas source fluidly connected to a delivery line comprising a dispensing end. The turbine component patch delivery system can further include one or more turbine component patch carriers that can be projected out of the dispensing end of the delivery line by the compressed gas source, wherein each of the one or more turbine component patch carriers comprise a turbine component patch material housed within a breakaway shell.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 25, 2015
    Inventors: Jacob John Kittleson, Don Mark Lipkin
  • Publication number: 20150118443
    Abstract: An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least one outer layer with the silicon-containing region through the constituent layer.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Don Mark Lipkin, Curtis Alan Johnson, Peter Joel Meschter, Sairam Sundaram, Julin Wan
  • Publication number: 20150118444
    Abstract: A method of forming an article includes forming a silicon-containing layer on a silicon-containing region of a surface of a substrate of the article; forming a plurality of channels and ridges in the silicon-containing layer; and forming at least one outer layer overlying the surface of the silicon-containing region. The plurality of channels and ridges may be formed by adding silicon-containing material to the silicon-containing layer. The channels and ridges may be formed by subtracting material from the silicon-containing layer. The channels and ridges may be formed by forming channels or grooves in the silicon-containing region of the surface of the substrate prior to formation of the silicon-containing layer.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Don Mark Lipkin, Curtis Alan Johnson, Joshua Lee Margolies, Larry Steven Rosenzweig, Julin Wan
  • Publication number: 20150083281
    Abstract: A high temperature component having an actuator body including an actuatable portion comprising a shape memory alloy containing one more of Ni, Al, Nb, Ti and Ta and a platinum-group metal. The shape memory alloy has an altered geometry at a predetermined temperature. The actuator is also capable of operation in and is resistant to high temperature oxidizing atmospheres. A method for forming an actuator and a method for high temperature control are also disclosed.
    Type: Application
    Filed: February 27, 2008
    Publication date: March 26, 2015
    Applicant: General Electric Company
    Inventors: Don Mark Lipkin, Liang Jiang, Ronald Scott Bunker
  • Patent number: 8910379
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Publication number: 20140342168
    Abstract: Articles for use at high temperatures, for example as gas turbine engine components, are described. The article includes a substrate and a coating disposed over the substrate. The coating includes a silicate phase that has a composition in accordance with the formula (A(1-x)Dx)2Si2O7, where x is a number at least 0.03 and up to 1; wherein A includes yttrium and D includes a Group 13 element, such as indium, gallium, and/or aluminum. Various combinations of other coatings may be included with the silicate-containing coating to enhance protection.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: General Electric Company
    Inventor: Don Mark Lipkin
  • Patent number: 8852786
    Abstract: A method of sealing a ceramic component to a metal component for a metal halide battery is provided. The method involves the steps of coating a portion of the ceramic component with a metallic coating, and then bonding the coated ceramic component to the metal component. The metallic coating includes a reactive metal. A sealing structure formed by using such a method is also presented.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Scott Andrew Weaver, Don Mark Lipkin, Radhakrishna Badekila Bhat, Andrew Joseph Detor, Brian William Cerniglia
  • Publication number: 20140272344
    Abstract: An article includes a substrate and a coating provided on a surface of the substrate. The coating includes at least one metal silicide layer consisting essentially of MoSi2 or WSi2 or (Mo, W)Si2 or a platinum group metal silicide and at least one layer consisting essentially of Si3N4.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Julin Wan, Milivoj Konstantin Brun, Peter Joel Meschter, Reza Sarrafi-Nour, Don Mark Lipkin
  • Publication number: 20140162027
    Abstract: An article includes a silicon-containing region including surface features on a surface thereof. The surface features include depressions, protuberances, or combinations thereof. At least one outer layer overlies the surface of the silicon-containing region. A constituent layer is provided on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer. The constituent layer is formed by constituents of the silicon-containing region and is susceptible to creep within an operating environment of the article. The surface features physically interlock the at least one outer layer with the silicon-containing region through the constituent layer.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter Joel Meschter, Curtis Alan Johnson, Sairam Sundaram, Julin Wan, Don Mark Lipkin
  • Patent number: 8739404
    Abstract: The present disclosure is directed to the use and manufacture of cooling features within a component used in a hot gas path, such as within a turbine. In one embodiment, channels are formed within an external surface of the component and filled with a removable material. The external surface and channels may then be coated with one or more layers, such as a structural layer and/or top coat. The removable material may then be removed to leave the channels free of the removable material.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Bin Wei, Ann Melinda Ritter, Don Mark Lipkin, Raul Basilio Rebak, Lawrence Bernard Kool, Dennis Michael Gray
  • Patent number: 8741420
    Abstract: A component is disclosed. The component comprises a substrate comprising an outer surface and an inner surface, where the inner surface defines at least one hollow, interior space, where the outer surface defines one or more grooves, and where each of the one or more grooves extends at least partially along the surface of the substrate and has a base. One or more access holes extend through the base of a respective groove to place the groove in fluid communication with respective ones of the at least one hollow interior space. The component further comprises a coating disposed over at least a portion of the substrate surface, where the coating comprises one or more layers. At least one of the layers defines one or more permeable slots, such that the respective layer does not completely bridge each of the one or more grooves. The grooves and the coating together define one or more channels for cooling the component.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Dennis Michael Gray, Don Mark Lipkin
  • Publication number: 20140093667
    Abstract: A component is disclosed. The component comprises a substrate comprising an outer surface and an inner surface, where the inner surface defines at least one hollow, interior space, where the outer surface defines one or more grooves, and where each of the one or more grooves extends at least partially along the surface of the substrate and has a base. One or more access holes extend through the base of a respective groove to place the groove in fluid communication with respective ones of the at least one hollow interior space. The component further comprises a coating disposed over at least a portion of the substrate surface, where the coating comprises one or more layers. At least one of the layers defines one or more permeable slots, such that the respective layer does not completely bridge each of the one or more grooves. The grooves and the coating together define one or more channels for cooling the component.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: General Electric Company
    Inventors: Ronald Scott Bunker, Dennis Michael Gray, Don Mark Lipkin
  • Patent number: 8673397
    Abstract: A component is disclosed. The component comprises a substrate comprising an outer surface and an inner surface, where the inner surface defines at least one hollow, interior space, where the outer surface defines one or more grooves, and where each of the one or more grooves extends at least partially along the surface of the substrate and has a base. One or more access holes extend through the base of a respective groove to place the groove in fluid communication with respective ones of the at least one hollow interior space. The component further comprises a coating disposed over at least a portion of the substrate surface, where the coating comprises one or more layers. At least one of the layers defines one or more permeable slots, such that the respective layer does not completely bridge each of the one or more grooves. The grooves and the coating together define one or more channels for cooling the component. Methods for fabricating and coating a component are also provided.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: March 18, 2014
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Dennis Michael Gray, Don Mark Lipkin
  • Publication number: 20140037969
    Abstract: A bond layer may be applied to the substrate of an article and a first layer may be applied to the bond layer by thermal spray. A second layer may be applied above the first layer by slurry coating.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joshua Lee Margolies, Herbert Chidsey Roberts, Don Mark Lipkin, Glen Harold Kirby, Nicholas Edward Antolino
  • Patent number: 8632890
    Abstract: A method for forming a nickel aluminide based coating on a metallic substrate includes providing a first source for providing a significant portion of the aluminum content for a coating precursor and a separate nickel alloy source for providing substantially all the nickel and additional alloying elements for the coating precursor. Cathodic arc (ion plasma) deposition techniques may be utilized to provide the coating precursor on a metallic substrate. The coating precursor may be provided in discrete layers, or from a co-deposition process. Subsequent processing or heat treatment forms the nickel aluminide based coating from the coating precursor.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Don Mark Lipkin, Michael Howard Rucker, Rudolfo Viguie
  • Publication number: 20140004310
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicant: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, Lawrence Bernard Kool
  • Patent number: 8601691
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Renee Bushey Rohling, Scott Andrew Weaver, Ronald Scott Bunker, Don Mark Lipkin, John Brian McDermott, Lawrence Bernard Kool, Ann Melinda Ritter
  • Patent number: 8528208
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface. A sacrificial filler is deposited within the groove, a second filler is deposited over the sacrificial filler, and a coating is disposed over at least a portion of the outer surface and over the second filler. The method further includes removing the sacrificial filler and at least partially removing the second filler from the groove(s), to define one or more channels for cooling the component.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Raul Basilio Rebak, Ronald Scott Bunker, Lawrence Bernard Kool, Don Mark Lipkin, John Brian McDermott, Ann Melinda Ritter, Renee Bushey Rohling
  • Publication number: 20130078428
    Abstract: A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin, John Brian McDermott
  • Publication number: 20130078418
    Abstract: A manufacturing method is provided. The manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes processing an intermediate surface of the component to plastically deform the surface adjacent at least one edge of a respective groove, such that the distance across the top of the groove is reduced. Another manufacturing method is provided and includes processing an intermediate surface of the component to facet the intermediate surface in the vicinity of the groove.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin