Patents by Inventor Donald C. Dafoe

Donald C. Dafoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920160
    Abstract: Production of beta-cells from stem cells from pluripotent stem cells have always been significantly lacking in at least one of the following properties: 1) functional properties related to insulin-production and glucose signaling response, 2) mature phenotype such as biochemical markers or cell structures, 3) efficiency in production of differentiated cells. Described herein is multistep differentiation protocol which substantially overcomes all of the existing limitations. Pluripotent stem cells, including induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) can be differentiated using an embryoid body (EB) formation step, followed by B maturation via endothelial cells (EC) co-culturing and incubation with a sequential series of bone morphogenic protein (BMP)-related growth factor cocktails. The resulting cells displayed functional properties, including insulin-production and glucose signaling response, and mature phenotype of C-peptide expression.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: March 5, 2024
    Assignee: Cedars-Sinai Medical Center
    Inventors: Dodanim Talavera-Adame, Donald C. Dafoe
  • Publication number: 20150376574
    Abstract: Production of beta-cells from stem cells from pluripotent stem cells have always been significantly lacking in at least one of the following properties: 1) functional properties related to insulin-production and glucose signaling response, 2) mature phenotype such as biochemical markers or cell structures, 3) efficiency in production of differentiated cells. Described herein is multistep differentiation protocol which substantially overcomes all of the existing limitations. Pluripotent stem cells, including induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) can be differentiated using an embryoid body (EB) formation step, followed by B maturation via endothelial cells (EC) co-culturing and incubation with a sequential series of bone morphogenic protein (BMP)-related growth factor cocktails. The resulting cells displayed functional properties, including insulin-production and glucose signaling response, and mature phenotype of C-peptide expression.
    Type: Application
    Filed: February 21, 2014
    Publication date: December 31, 2015
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Dodanim Talavera-Adame, Donald C. Dafoe