Patents by Inventor Donald Chickering

Donald Chickering has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6730322
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: May 4, 2004
    Assignee: Acusphere, Inc.
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Publication number: 20040070093
    Abstract: A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
    Type: Application
    Filed: August 12, 2003
    Publication date: April 15, 2004
    Applicant: Brown University Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, Yong S. Jong, Jules S. Jacob
  • Patent number: 6689390
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: February 10, 2004
    Assignee: Acusphere, Inc.
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Publication number: 20030236574
    Abstract: The composition as described serves for in vivo cartilage repair. It basically consists of a naturally derived osteoinductive and/or chondroinductive mixture of factors (e.g. derived from bone) or of a synthetic mimic of such a mixture combined with a nanosphere delivery system. A preferred mixture of factors is the combination of factors isolated from bone, known as BP and described by Poser and Benedict (WO 95/13767). The nanosphere delivery system consists of nanospheres defined as polymer particles of less than 1000 nm in diameter (whereby the majority of particles preferably ranges between 200-400 nm) in which nanospheres the combination of factors is encapsulated. The nano-spheres are loaded with the mixture of factors in a weight ratio of 0.001 to 17% (w/w), preferably of 1 to 4% (w/w) and have a release profile with an initial burst of 10 to 20% of the total load over the first 24 hours and a long time release of at least 0.1 per day during at least seven following days.
    Type: Application
    Filed: March 11, 2003
    Publication date: December 25, 2003
    Applicant: Sulzer Innotec AG
    Inventors: Pedro Bittman, Brent L. Atkinson, James J. Benedict, John Ranieri, Marsha L. Whitney, Donald Chickering
  • Patent number: 6616869
    Abstract: A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: September 9, 2003
    Assignee: Brown University Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, III, Yong S. Jong, Jules S. Jacob
  • Publication number: 20030147962
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Application
    Filed: March 5, 2003
    Publication date: August 7, 2003
    Applicant: Acusphere, Inc.
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Patent number: 6582471
    Abstract: The composition as described serves for in vivo cartilage repair. It basically consists of a naturally derived osteoinductive and/or chondroinductive mixture of factors (e.g. derived from bone) or of a synthetic mimic of such a mixture combined with a nanosphere delivery system. A preferred mixture of factors is the combination of factors isolated from bone, known as BP and described by Poser and Benedict (WO 95/13767). The nanosphere delivery system consists of nanospheres defined as polymer particles of less than 1000 nm in diameter (whereby the majority of particles preferably ranges between 200-400 nm) in which nanospheres the combination of factors is encapsulated. The nanospheres are loaded with the mixture of factors in a weight ratio of 0.001 to 17% (w/w), preferably of 1 to 4% (w/w) and have a release profile with an initial burst of 10 to 20% of the total load over the first 24 hours and a long time release of at least 0.1 per day during at least seven following days.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: June 24, 2003
    Assignee: Sulzer Innotec AG
    Inventors: Pedro Bittmann, Brent Atkinson, James J. Benedict, John Ranieri, Marsha L. Whitney, Donald Chickering
  • Patent number: 6423345
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: July 23, 2002
    Assignee: Acusphere, Inc.
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Publication number: 20010043948
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Application
    Filed: February 22, 1999
    Publication date: November 22, 2001
    Inventors: HOWARD BERNSTEIN, DONALD CHICKERING, SARWAT KHATTAK, JULIE STRAUB
  • Publication number: 20010042932
    Abstract: A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 22, 2001
    Inventors: Edith Mathiowitz, Donald Chickering, Yong Jong, Jules Jacob
  • Patent number: 6235224
    Abstract: A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: May 22, 2001
    Assignee: Brown University Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, III, Yong S. Jong, Jules S. Jacob
  • Patent number: 6235313
    Abstract: Bioadhesive polymers in the form of, or as a coating on, microcapsules containing drugs or bioactive substances which may serve for therapeutic, or diagnostic purposes in diseases of the gastrointestinal tract, are described. The polymeric microspheres all have a bioadhesive force of at least 11 mN/cm2 (110 N/m2). Techniques for the fabrication of bioadhesive microspheres, as well as a method for measuring bioadhesive forces between microspheres and selected segments of the gastrointestinal tract in vitro are also described. This quantitative method provides a means to establish a correlation between the chemical nature, the surface morphology and the dimensions of drug-loaded microspheres on one hand and bioadhesive forces on the other, allowing the screening of the most promising materials from a relatively large group of natural and synthetic polymers which, from theoretical consideration, should be used for making bioadhesive microspheres.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: May 22, 2001
    Assignee: Brown University Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, III, Jules S. Jacob
  • Publication number: 20010000470
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Application
    Filed: December 6, 2000
    Publication date: April 26, 2001
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Patent number: 6217908
    Abstract: Bioadhesive polymers in the form of, or as a coating on, microcapsules containing drugs or bioactive substances which may serve for therapeutic, or diagnostic purposes in diseases of the gastrointestinal tract, are described. The polymeric microspheres all have a bioadhesive force of at least 11 mN/cm2 (110 N/m2). Techniques for the fabrication of bioadhesive microspheres, as well as a method for measuring bioadhesive forces between microspheres and selected segments of the gastrointestinal tract in vitro are also described. This quantitative method provides a means to establish a correlation between the chemical nature, the surface morphology and the dimensions of drug-loaded microspheres on one hand and bioadhesive forces on the other, allowing the screening of the most promising materials from a relatively large group of natural and synthetic polymers which, from theoretical consideration, should be used for making bioadhesive microspheres.
    Type: Grant
    Filed: April 23, 1993
    Date of Patent: April 17, 2001
    Assignee: Brown University Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, Jules Serge Jacob
  • Publication number: 20010000230
    Abstract: A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as “hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
    Type: Application
    Filed: December 6, 2000
    Publication date: April 12, 2001
    Inventors: Howard Bernstein, Donald Chickering, Sarwat Khattak, Julie Straub
  • Patent number: 6197346
    Abstract: Bioadhesive polymers in the form of, or as a coating on, microcapsules containing drugs or bioactive substances which may serve for therapeutic, diagnostic, or diagnostic purposes in diseases of the gastrointestinal tract, are described. The polymeric microspheres all have a bioadhesive force of at least 11 mN/cm2 (110 N/CM2). Techniques for the fabrication of bioadhesive microspheres, as well as a method for measuring bioadhesive forces between microspheres and selected segments of the gastrointestinal tract in vitro are also described. This quantitative method provides a means to establish a correlation between the chemical nature, the surface morphology and the dimensions of drug-loaded microspheres on one hand and bioadhesive forces on the other, allowing the screening of the most promising materials from a relatively large group of natural and synthetic polymers which, from theoretical consideration, should be used for making bioadhesive microspheres.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: March 6, 2001
    Assignee: Brown Universtiy Research Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, Jules Serge Jacob
  • Patent number: 6143211
    Abstract: A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: November 7, 2000
    Assignee: Brown University Foundation
    Inventors: Edith Mathiowitz, Donald Chickering, III, Yong S. Jong, Jules S. Jacob