Patents by Inventor Donald John Jackson

Donald John Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11339755
    Abstract: Electronic fuel injection for an internal combustion engine maintains an operator-specified air-to-fuel ratio during engine operations in high-speed, high-volume, mixed fuel applications. A microprocessor-based controller executes a program stored in memory to calculate a fuel flow value as a function of the specified air-to-fuel ratio and specified density ratio of mixed fuels. The controller outputs a control signal to a variable fuel flow relief valve and receives feedback from an engine fuel flow sensor. The controller adjusts the control signal until the feedback matches the fuel flow value. The program optimizes the fuel flow value by accounting for engine air flow, water vapor density, and dry air density effects in the calculation, based on signals received by the controller from various environmental sensors. The system has particular application in dragster engines that burn a mixture of nitromethane and methanol.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: May 24, 2022
    Inventor: Donald John Jackson
  • Publication number: 20210293213
    Abstract: Electronic fuel injection for an internal combustion engine maintains an operator-specified air-to-fuel ratio during engine operations in high-speed, high-volume, mixed fuel applications. A microprocessor-based controller executes a program stored in memory to calculate a fuel flow value as a function of the specified air-to-fuel ratio and specified density ratio of mixed fuels. The controller outputs a control signal to a variable fuel flow relief valve and receives feedback from an engine fuel flow sensor. The controller adjusts the control signal until the feedback matches the fuel flow value. The program optimizes the fuel flow value by accounting for engine air flow, water vapor density, and dry air density effects in the calculation, based on signals received by the controller from various environmental sensors. The system has particular application in dragster engines that burn a mixture of nitromethane and methanol.
    Type: Application
    Filed: June 2, 2021
    Publication date: September 23, 2021
    Inventor: Donald John JACKSON
  • Patent number: 11047351
    Abstract: Electronic fuel injection for an internal combustion engine maintains an operator-specified air-to-fuel ratio during engine operations in high-speed, high-volume, mixed fuel applications. A microprocessor-based controller executes a program stored in memory to calculate a fuel flow value as a function of the specified air-to-fuel ratio and specified density ratio of mixed fuels. The controller outputs a control signal to a variable fuel flow relief valve and receives feedback from an engine fuel flow sensor. The controller adjusts the control signal until the feedback matches the fuel flow value. The program optimizes the fuel flow value by accounting for engine air flow, water vapor density, and dry air density effects in the calculation, based on signals received by the controller from various environmental sensors. The system has particular application in dragster engines that burn a mixture of nitromethane and methanol.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: June 29, 2021
    Inventor: Donald John Jackson
  • Patent number: 10406540
    Abstract: An impact nozzle that atomizes fuel and minimizes liquefication at a supercharger intake manifold comprises a body defining an enclosed channel having proximal and distal ends, a means for attaching a jet to the proximal end, and a pedestal spanning the distal end. An impact pin extending proximally from the pedestal is spaced distally from the distal end of the channel. The impact pin may be mounted to a central longitudinal member having four contoured sides each having a maximum thickness at its distal end and a minimum thickness at its proximal end, the minimum thickness occurring along one of four straight edges that define a rectangular end of the central longitudinal member to which the impact pin is attached, and each border between any two contoured sides forming a sharp contoured edge for evenly dispersing atomized fuel.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 10, 2019
    Inventor: Donald John Jackson
  • Publication number: 20180187641
    Abstract: An impact nozzle that atomizes fuel and minimizes liquefication at a supercharger intake manifold comprises a body defining an enclosed channel having proximal and distal ends, a means for attaching a jet to the proximal end, and a pedestal spanning the distal end. An impact pin extending proximally from the pedestal is spaced distally from the distal end of the channel. The impact pin may be mounted to a central longitudinal member having four contoured sides each having a maximum thickness at its distal end and a minimum thickness at its proximal end, the minimum thickness occurring along one of four straight edges that define a rectangular end of the central longitudinal member to which the impact pin is attached, and each border between any two contoured sides forming a sharp contoured edge for evenly dispersing atomized fuel.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 5, 2018
    Inventor: Donald John Jackson