Patents by Inventor Donald M. Kroeger

Donald M. Kroeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030051579
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at %Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100>orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 20, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20030051578
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100>orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 20, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20030047030
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 13, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20030010154
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100>orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 30, 2002
    Publication date: January 16, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20030003316
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 30, 2002
    Publication date: January 2, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6486100
    Abstract: A multi-domained bulk REBa2CU3Ox with low-angle domain boundaries which resemble a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2CU3Ox pieces, textured substrates comprises of grains with low misorientation angles, or thick film REBa2CU3Ox deposited on such textured substrate, such seeds being tailored for various REBa2CU3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2CU3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: November 26, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6468591
    Abstract: Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: October 22, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Paranthaman, Amit Goyal, Donald M. Kroeger, Frederic A. List, III
  • Patent number: 6451450
    Abstract: A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO2, YSZ, LaAlO3, SrTiO3, Y2O3, RE2O3, SrRuO3, LaNiO3 and La2ZrO3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: September 17, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Donald M. Kroeger, Mariappan Paranthaman, Dominic F. Lee, Roeland Feenstra, David P. Norton
  • Patent number: 6447714
    Abstract: A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO2, and Y2O3; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: September 10, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6385835
    Abstract: A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: May 14, 2002
    Assignee: UT Battelle
    Inventors: Donald M. Kroeger, Frederick A. List, III
  • Publication number: 20020005084
    Abstract: A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag—Cu, Ag—Pd, Ni—Cu, Ni—V, Ni—Mo, Ni—Al, Ni—Cr—Al, Ni—W—Al, Ni—V—Al, Ni—Mo—Al, Ni—Cu—Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 16, 2001
    Publication date: January 17, 2002
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20020004144
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the prefonn article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 16, 2001
    Publication date: January 10, 2002
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20020001711
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy perform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 16, 2001
    Publication date: January 3, 2002
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6286194
    Abstract: A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: September 11, 2001
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventors: Donald M. Kroeger, Frederick A. List, III
  • Patent number: 6261704
    Abstract: Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: July 17, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Paranthaman, Amit Goyal, Donald M. Kroeger, Frederic A. List, III
  • Patent number: 6256521
    Abstract: A multi-domained bulk REBa2Cu3Ox with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2Cu3Ox pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa2Cu3Ox deposited on such textured substrate, such seeds being tailored for various REBa2Cu3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2Cu3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: July 3, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6235402
    Abstract: A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: May 22, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Shara S. Shoup, Mariappan Paranthamam, David B. Beach, Donald M. Kroeger, Amit Goyal
  • Patent number: 6159610
    Abstract: Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: December 12, 2000
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Paranthaman, Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6156376
    Abstract: Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: December 5, 2000
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Paranthaman, Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6150034
    Abstract: Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: November 21, 2000
    Assignee: UT-Battelle, LLC
    Inventors: Mariappan Paranthaman, Dominic F. Lee, Donald M. Kroeger, Amit Goyal