Patents by Inventor Donald W. Plass

Donald W. Plass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098056
    Abstract: A method includes receiving, at a bitline-mux driver circuit, a subarray activation (SUBA) signal and a delay signal. The bitline-mux driver circuit includes a header circuit operable to output a driver voltage to a plurality of driver circuits. The driver voltage is boosted through a voltage divider with diode header circuit based on the SUBA signal to set the driver voltage to a value above a standard supply voltage (VDD) and between a voltage bitline high (VBLH) level and a high voltage (VPP) level. The VPP level exceeds a maximum allowed voltage (VMAX) level of the driver circuits. A master wordline output of the driver circuits is driven to select a bitline mux of a computer memory module based on an address input signal, the delay signal, and the driver voltage.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Gregory J. Fredeman, Thomas E. Miller, Dinesh Kannambadi, Kenneth J. Reyer, Donald W. Plass
  • Patent number: 10943647
    Abstract: A method includes receiving, at a bitline-mux driver circuit, a subarray activation (SUBA) signal and a delay signal. The bitline-mux driver circuit includes a header circuit operable to output a driver voltage to a plurality of driver circuits. The driver voltage is boosted through a voltage divider with diode header circuit based on the SUBA signal to set the driver voltage to a value above a standard supply voltage (VDD) and between a voltage bitline high (VBLH) level and a high voltage (VPP) level. The VPP level exceeds a maximum allowed voltage (VMAX) level of the driver circuits. A master wordline output of the driver circuits is driven to select a bitline mux of a computer memory module based on an address input signal, the delay signal, and the driver voltage.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Gregory J. Fredeman, Thomas E. Miller, Dinesh Kannambadi, Kenneth J. Reyer, Donald W. Plass
  • Patent number: 10930339
    Abstract: Techniques for voltage bitline high (VBLH) regulation for a computer memory are described herein. An aspect includes generating, by a resistor ladder and a diode compensation footer, a VBLH reference signal based on a high voltage (VPP) in a computer memory module. Another aspect includes regulating a VBLH signal based on the VBLH reference signal. Another aspect includes regulating a wordline driver voltage of the computer memory module based on the VBLH signal.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory J. Fredeman, Bishan He, Dinesh Kannambadi, Kenneth J. Reyer, Donald W. Plass
  • Patent number: 10832756
    Abstract: Techniques for negative voltage generation for a computer memory are described herein. An aspect includes enabling a first negative word line voltage (VWL) clock generator. Another aspect includes providing, by the first VWL clock generator, based on a clock signal, a first pump clock signal to a first VWL pump, and a second pump clock signal to a second VWL pump. Another aspect includes generating a VWL based on the first VWL pump and the second VWL pump, wherein the VWL is provided to a word line driver of a computer memory module. Another aspect includes comparing the VWL to a VWL reference voltage. Another aspect includes, based on the VWL being below the VWL reference voltage, disabling the first VWL clock generator, wherein the first VWL pump and the second VWL pump are disabled based on disabling the first VWL clock generator.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory J. Fredeman, Thomas E. Miller, Dinesh Kannambadi, Phil Paone, Donald W. Plass
  • Patent number: 10762953
    Abstract: A memory array is described herein that includes a static random-access memory (SRAM) array to store data. The memory array also includes a bit circuit to retrieve the data from the SRAM array, the bit circuit to be operated with a clock signal that oscillates between a low state and an intermediate state, wherein the intermediate state is between the low state and a high state. Furthermore, the memory array includes a sense amplifier to amplify an output signal from the bit circuit indicating a value of the stored data, wherein the sense amplifier does not include a cross coupled positive field-effect transistor.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Noam Jungmann, Donald W. Plass
  • Publication number: 20200194059
    Abstract: A memory array is described herein that includes a static random-access memory (SRAM) array to store data. The memory array also includes a bit circuit to retrieve the data from the SRAM array, the bit circuit to be operated with a clock signal that oscillates between a low state and an intermediate state, wherein the intermediate state is between the low state and a high state. Furthermore, the memory array includes a sense amplifier to amplify an output signal from the bit circuit indicating a value of the stored data, wherein the sense amplifier does not include a cross coupled positive field-effect transistor.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Noam Jungmann, Donald W. Plass
  • Patent number: 10559346
    Abstract: Embodiments include a method, memory system and a device for the operating a bit-line sensing circuit for bias-controlled bit-line sensing, the embodiments include an input for receiving a single-ended local bit-line signal, a pass device having a first terminal coupled to the input and a second terminal connected to a global bit-line node, The embodiments also include a first inverter having an input connected to the global bit-line node, a header circuit coupled to the first inverter and a first direct current (DC) bias circuit, and a footer circuit coupled to the first inverter and a second DC bias circuit. The embodiments include a second gated inverter having an input coupled to an output of the first inverter.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: February 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Abraham Mathews, Donald W Plass
  • Publication number: 20190228812
    Abstract: Embodiments include a method, memory system and a device for the operating a bit-line sensing circuit for bias-controlled bit-line sensing, the embodiments include an input for receiving a single-ended local bit-line signal, a pass device having a first terminal coupled to the input and a second terminal connected to a global bit-line node, The embodiments also include a first inverter having an input connected to the global bit-line node, a header circuit coupled to the first inverter and a first direct current (DC) bias circuit, and a footer circuit coupled to the first inverter and a second DC bias circuit. The embodiments include a second gated inverter having an input coupled to an output of the first inverter.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 25, 2019
    Inventors: Abraham Mathews, Donald W. Plass
  • Patent number: 9748958
    Abstract: A driver circuit and associated techniques include managing voltage driving an electronic device. An input signal having a first voltage level is received. Processes may perform level shifting of the first voltage level to a second voltage level. The second voltage level may be clamped, for instance, but a diode circuit. The second output voltage level may be programmable, as may be current and resistance levels of the driver circuit.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory J. Fredeman, Abraham Mathews, Donald W. Plass, Kenneth J. Reyer
  • Publication number: 20160352336
    Abstract: A driver circuit and associated techniques include managing voltage driving an electronic device. An input signal having a first voltage level is received. Processes may perform level shifting of the first voltage level to a second voltage level. The second voltage level may be clamped, for instance, but a diode circuit. The second output voltage level may be programmable, as may be current and resistance levels of the driver circuit.
    Type: Application
    Filed: February 24, 2016
    Publication date: December 1, 2016
    Inventors: Gregory J. Fredeman, Abraham Mathews, Donald W. Plass, Kenneth J. Reyer
  • Patent number: 9341655
    Abstract: A method for operating a charge pump that supplies switching current for a plurality of transistors includes a capacitor generating a pumped voltage. A comparator generates a pump control signal for turning on and off charging of the pump capacitor based on a difference between a comparison voltage and a reference voltage. A direct voltage sensor receives a feedback signal reflecting the pumped voltage and generates the comparison voltage in response to the feedback signal. The sensor includes a sensor resistor, a current source configured to drive a sensor current through the sensor resistor, and a differential op-amp that drives the sensor current to cause the voltage drop across the sensor resistor to remain constant as the pumped voltage experiences the voltage drop. The charge pump may include two similar direct voltage sensor controlling positive and negative pumped voltages.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 17, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Paul D. Muench, Donald W. Plass, Michael A. Sperling
  • Patent number: 9299458
    Abstract: A method for testing a circuit comprising a memory element, a voltage comparator and a supply selector, the circuit is configured to be connected to two power supplies, the voltage comparator is configured to provide an output indicative of a voltage difference between the two power supplies above a predetermined threshold, the supply selector is configured to select a power supply to feed power to the memory element in response to the output from the voltage comparator. The method comprises connecting the two power supplies to the circuit, wherein said connecting comprises causing the two power supplies to drive power to the memory element and to another element of the circuit, wherein the voltage different between the two power supplies is above the predetermined threshold.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Lior Binyamini, Lidar Herooti, Noam Jungmann, Elazar Kachir, Donald W. Plass, Hezi Shalom, Israel Wagner
  • Publication number: 20160071617
    Abstract: A method for testing a circuit comprising a memory element, a voltage comparator and a supply selector, the circuit is configured to be connected to two power supplies, the voltage comparator is configured to provide an output indicative of a voltage difference between the two power supplies above a predetermined threshold, the supply selector is configured to select a power supply to feed power to the memory element in response to the output from the voltage comparator. The method comprises connecting the two power supplies to the circuit, wherein said connecting comprises causing the two power supplies to drive power to the memory element and to another element of the circuit, wherein the voltage different between the two power supplies is above the predetermined threshold.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 10, 2016
    Inventors: Lior Binyamini, Lidar Herooti, Noam Jungmann, Elazar Kachir, Donald W. Plass, Hezi Shalom, Israel Wagner
  • Publication number: 20160071551
    Abstract: A circuit comprising a first power supply having a first voltage and a second power supplying having a second voltage, wherein said first and second voltages are different at least in some cycles of said circuit, a memory element, wherein said first and second power supplies are driven into said memory element, a voltage comparator having connected thereto said first and second power supplies, wherein said voltage comparator is an analog to digital converter configured to provide digital output indicting of a voltage difference over a predetermined threshold between said first and second power supplies, and a supply selector element, wherein said supply selector element is configured to disconnect said second power supply from said memory element in response to the digital output of said voltage comparator.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Inventors: Lior Binyamini, Lidar Herooti, Noam Jungmann, Elazar Kachir, Donald W. Plass, Hezi Shalom, Israel Wagner
  • Patent number: 9263096
    Abstract: A circuit comprising a first power supply having a first voltage and a second power supplying having a second voltage, wherein said first and second voltages are different at least in some cycles of said circuit, a memory element, wherein said first and second power supplies are driven into said memory element, a voltage comparator having connected thereto said first and second power supplies, wherein said voltage comparator is an analog to digital converter configured to provide digital output indicting of a voltage difference over a predetermined threshold between said first and second power supplies, and a supply selector element, wherein said supply selector element is configured to disconnect said second power supply from said memory element in response to the digital output of said voltage comparator.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Lior Binyamini, Lidar Herooti, Noam Jungmann, Elazar Kachir, Donald W. Plass, Hezi Shalom, Israel Wagner
  • Patent number: 9250271
    Abstract: Embodiments relate to a direct voltage sensor and a charge pump system for a computer system. A charge pump that supplies switching current for a plurality of transistors includes a capacitor generating a pumped voltage. A comparator generates a pump control signal for turning on and off charging of the pump capacitor based on a difference between a comparison voltage and a reference voltage. A direct voltage sensor receives a feedback signal reflecting the pumped voltage and generates the comparison voltage in response to the feedback signal. The sensor includes a sensor resistor, a current source configured to drive a sensor current through the sensor resistor, and a differential op-amp that drives the sensor current to cause the voltage drop across the sensor resistor to remain constant as the pumped voltage experiences the voltage drop. The charge pump may include two similar direct voltage sensor controlling positive and negative pumped voltages.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: February 2, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Paul D. Muench, Donald W. Plass, Michael A. Sperling
  • Patent number: 9224437
    Abstract: A single-ended input sense amplifier uses a pass device to couple the input local bit-line to a global bit-line evaluation node. The sense amplifier also includes a pair of cross-coupled inverters, a first inverter of which has an input that coupled directly to the global bit-line evaluation node. The output of the second inverter is selectively coupled to the global bit-line evaluation node in response to a control signal, so that when the pass device is active, the local bit line charges or discharges the global bit-line evaluation node without being affected substantially by a state of the output of the second inverter. When the control signal is in the other state, the cross-coupled inverter forms a latch. An internal output control circuit of the second inverter interrupts the feedback provided by the second inverter in response to the control signal.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John E. Barth, Jr., Abraham Mathews, Donald W. Plass, Kenneth J. Reyer
  • Patent number: 9099200
    Abstract: A novel and useful SRAM restore tracking circuit adapted to improve the tracking of SRAM cell behavior for different PVT corners. The SRAM array access path is mainly influenced by two stages: (1) the wordline (WL) delay and (2) the SRAM cell delay. These two stages are usually the most sensitive for process variation in the memory access path. The restore tracking circuit incorporates two novel topologies for enhanced tracking to SRAM cell behavior. The first topology is a circuit that functions to mimic the wordline load and delay characteristics. The WL stage is very sensitive to process variation due to the large load it must drive and the usually relatively poor slope (i.e. depending on the number of cells the WL). The second topology is a circuit that mimics the SRAM cell load and delay characteristics. The SRAM cell is very sensitive to process variation due to its very small device features and the high number of cells in the memory array.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: August 4, 2015
    Assignee: International Business Machines Corporation
    Inventors: Lior Binyamini, Noam Jungmann, Elazar Kachir, Donald W. Plass
  • Publication number: 20150162059
    Abstract: A method of operation of a high-voltage word-line driver circuit for a memory device prevents any single transistor of the driver from having the full power supply voltage from which the word-line output signal is generated, from being applied across any single transistor of the word-line driver circuit. A pair of cascode devices are connected in series with the pull-down device of the input stage and a pull-up device of the input stage, and biased using reference voltages to control the maximum voltage drop across the pull-down device when the pull-down device is off and the pull-up device is active, and to control the maximum voltage drop across the pull-up device when the pull-down device is active. The output stage also includes cascode devices that protect the output pull-down and pull-up devices, and the reference voltages that bias the input and output cascode pairs may be the same reference voltages.
    Type: Application
    Filed: June 10, 2014
    Publication date: June 11, 2015
    Inventors: Gregory J. Fredeman, Abraham Mathews, Donald W. Plass, Kenneth J. Reyer
  • Patent number: 9053770
    Abstract: A method of operation of a high-voltage word-line driver circuit for a memory device prevents any single transistor of the driver from having the full power supply voltage from which the word-line output signal is generated, from being applied across any single transistor of the word-line driver circuit. A pair of cascode devices are connected in series with the pull-down device of the input stage and a pull-up device of the input stage, and biased using reference voltages to control the maximum voltage drop across the pull-down device when the pull-down device is off and the pull-up device is active, and to control the maximum voltage drop across the pull-up device when the pull-down device is active. The output stage also includes cascode devices that protect the output pull-down and pull-up devices, and the reference voltages that bias the input and output cascode pairs may be the same reference voltages.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: June 9, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory J. Fredeman, Abraham Mathews, Donald W. Plass, Kenneth J. Reyer