Patents by Inventor Donald Warren Pettibone

Donald Warren Pettibone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10324045
    Abstract: Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 18, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Steve (Yifeng) Cui, Chunsheng Huang, Chunhai Wang, Christian Wolters, Bret Whiteside, Anatoly G. Romanovsky, Chuanyong Huang, Donald Warren Pettibone
  • Publication number: 20180038803
    Abstract: Methods and systems for reducing illumination intensity while scanning over large particles are presented herein. A surface inspection system determines the presence of a large particle in the inspection path of a primary measurement spot using a separate leading measurement spot. The inspection system reduces the incident illumination power while the large particle is within the primary measurement spot. The primary measurement spot and the leading measurement spot are separately imaged by a common imaging collection objective onto one or more detectors. The imaging based collection design spatially separates the image of the leading measurement spot from the image of the primary measurement spot at one or more wafer image planes. Light detected from the leading measurement spot is analyzed to determine a reduced power time interval when the optical power of the primary illumination beam and the leading illumination beam are reduced.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 8, 2018
    Inventors: Steve (Yifeng) Cui, Chunsheng Huang, Chunhai Wang, Christian Wolters, Bret Whiteside, Anatoly G. Romanovsky, Chuanyong Huang, Donald Warren Pettibone