Patents by Inventor Donavon Mark Delozier

Donavon Mark Delozier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9475973
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Jr., Sayata Ghose, John W. Connell
  • Patent number: 8790773
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: July 29, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier
  • Publication number: 20140203206
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, JR., Sayata Ghose, John W. Connell
  • Patent number: 8703235
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 22, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Publication number: 20110256197
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Publication number: 20090022977
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 22, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A. Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier