Patents by Inventor Dong-Gyun Woo

Dong-Gyun Woo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276084
    Abstract: A circuit has a variable output that changes an output of a fixed input inversion amplification circuit, which includes a first operation amplifier with one input terminal that is applied with a fixed input value. The circuit includes an intermediate inversion amplification circuit having a second operation amplifier with an output terminal that is connected to another input terminal of the operation amplifier included in the fixed input inversion amplification circuit. One input terminal of the second operation amplifier is applied with the same input value as the fixed input value applied to the one input terminal of the first operation amplifier. Another input terminal of the second operation amplifier is applied with a variable input corresponding to an output of the first operation amplifier.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 30, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Shin Hye Chun, Dong Gyun Woo, Gyu Tae Choi
  • Patent number: 10270273
    Abstract: Disclosed is a charging apparatus mounted in a vehicle. The charging apparatus includes at least two power modules parallel to each other to convert input power applied from an outside into a charging power for charging a high-voltage battery, at least two slave controllers that outputs information about whether each of the power modules enters a constant-voltage charging mode, based on the charging power output from the power modules, and a master controller that determines whether the at least two power modules enter the constant-voltage charging mode by utilizing the information, which is received from the slave controllers, about whether each of the power modules enters the constant-voltage charging mode, wherein the master controller controls such that one of the power modules is operated when the power modules enter the constant-voltage charging mode.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 23, 2019
    Assignee: Hyundai Motor Company
    Inventors: Dong Gyun Woo, Hui Sung Jang, Hyun Wook Seong
  • Publication number: 20190115779
    Abstract: Disclosed is an on-board charging system in which, when a plurality of charging circuits is connected in parallel between input and output terminals, operation timings of switching circuits in the respective charging circuits are interlocked to minimize ripples of an input alternating current. The on-board charging system includes: a plurality of charging circuits configured to each have a power factor correction circuit portion for correcting a power factor of alternating current input power by pulse width modulation control of a switching element and to be connected in parallel with each other between an input terminal of the AC input power and an output terminal connected to an object to be charged; and a controller configured to interlock the switching elements to generate a PWM control signal for performing PWM control.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 18, 2019
    Inventors: Hui Sung Jang, Dong Gyun Woo, Hyun Wook Seong
  • Publication number: 20190084437
    Abstract: A voltage drop compensation control system and method of a power supply device are provided. The voltage drop compensation control system of the power supply device, for compensating for a voltage drop generated in an electric connection line between a direct current (DC)-DC converter and a battery includes a controller that generates a compensation voltage command that is obtained by compensating for an output voltage command of the DC-DC converter by applying a first control value for compensating for the voltage drop to the output voltage command. The controller also determines the first control value, based on an error between the compensation voltage command or an output voltage detection value of the DC-DC converter and a voltage of the battery.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 21, 2019
    Inventors: Gi Bong Son, Ho Joong Lee, Dong Gyun Woo, Won Kyoung Choi, Hyun Wook Seong
  • Patent number: 10171022
    Abstract: A motor driving device is disclosed. The motor driving device includes: a rectifier rectifying alternating current (AC) power into direct current (DC) power to output an input voltage; a first buck-boost converter including a plurality of switches for converting the input voltage and having a buck mode of stepping down the input voltage and a boost mode of stepping up the input voltage; an inverter converting a DC-link voltage transformed from the first buck-boost converter into an AC voltage and transferring the AC voltage to a motor; and a controller receiving motor information related to driving of the motor, comparing magnitudes of a desired DC-link voltage depending on the received motor information and the input voltage with each other, and performing a control to switch only any one of the plurality of switches so that the first buck-boost converter is operated in the buck mode or the boost mode.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 1, 2019
    Assignees: SAMSUNG ELECTRONICS CO., LTD., RESEARCH BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Jin-han Kim, Byoung-kuk Lee, Min-kook Kim, Sun-jin Kim, Hyun-soo Park, Dong-gyun Woo
  • Publication number: 20180130398
    Abstract: A circuit has a variable output that changes an output of a fixed input inversion amplification circuit, which includes a first operation amplifier with one input terminal that is applied with a fixed input value. The circuit includes an intermediate inversion amplification circuit having a second operation amplifier with an output terminal that is connected to another input terminal of the operation amplifier included in the fixed input inversion amplification circuit. One input terminal of the second operation amplifier is applied with the same input value as the fixed input value applied to the one input terminal of the first operation amplifier. Another input terminal of the second operation amplifier is applied with a variable input corresponding to an output of the first operation amplifier.
    Type: Application
    Filed: June 5, 2017
    Publication date: May 10, 2018
    Applicants: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Shin Hye Chun, Dong Gyun Woo, Gyu Tae Choi
  • Publication number: 20180131194
    Abstract: Disclosed is a charging apparatus mounted in a vehicle. The charging apparatus includes at least two power modules parallel to each other to convert input power applied from an outside into a charging power for charging a high-voltage battery, at least two slave controllers that outputs information about whether each of the power modules enters a constant-voltage charging mode, based on the charging power output from the power modules, and a master controller that determines whether the at least two power modules enter the constant-voltage charging mode by utilizing the information, which is received from the slave controllers, about whether each of the power modules enters the constant-voltage charging mode, wherein the master controller controls such that one of the power modules is operated when the power modules enter the constant-voltage charging mode.
    Type: Application
    Filed: May 5, 2017
    Publication date: May 10, 2018
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Dong Gyun WOO, Hui Sung JANG, Hyun Wook SEONG
  • Publication number: 20180109292
    Abstract: A reception pad for a wireless power transfer (WPT) system includes: a plate-shaped ferrite; an insulating layer disposed on one side of the ferrite; a first coil layer disposed on the insulating layer; an interlayer insulating layer disposed on the first coil layer; and a second coil layer disposed on the interlayer insulating layer. The insulating layer at least partially surrounds the first coil layer and the second coil layer, the first coil layer and the second coil layer at least partially overlap each other and are arranged in a rectangular ring form on the one side of the ferrite, and a ratio of a width which is larger between a first width of the first coil layer and a second width of the second coil layer to a first length of the ferrite in a width direction corresponding to the first width or the second width is 0.14 to 0.15.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 19, 2018
    Inventors: Woo Young Lee, Gyu Yeong Choe, Min Jung Kim, Min Kook Kim, Jong Eun Byeon, Min Hyuck Kang, Dong Gyun Woo, Byoung Kuk Lee, Dong Myoung Joo
  • Publication number: 20170327103
    Abstract: A charging device according to an exemplary embodiment of the present invention may include: a battery adapted and configured to store a DC voltage, first and second motors adapted and configured to operate as a motor or a generator, first and second inverters adapted and configured to operate the first and second motors, a voltage transformer adapted and configured to boost the DC voltage of the battery to supply it to the first and second inverters and boosts the DC voltage of the inverter to supply it to the battery, and a charging controller adapted and configured to operate the first and second inverters as a booster or operate the voltage transformer as a buck booster according to a voltage that is input through a neutral point of the first and second motors and the voltage of the battery.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 16, 2017
    Inventors: Seong Yeop Lim, Gu Bae Kang, Jeongbin Yim, Byungsoon Min, Byoung-Kuk Lee, Seung-Min Shin, Dong-Hee Kim, Dong-Gyun Woo
  • Publication number: 20170279309
    Abstract: A primary coil circuit of a ground assembly for wirelessly transferring power to a secondary coil includes: a primary coil magnetically coupled to the secondary coil and having a first terminal and a second terminal; a second capacitor having a first terminal and a second terminal connected to the first terminal of the primary coil; a first inductor having a first terminal coupled to a first input terminal of a power source and a second terminal coupled to the first terminal of the second capacitor; and a first capacitor having a first terminal coupled commonly to the second terminal of the first inductor and the first terminal of the second capacitor and a second terminal coupled commonly to the second terminal of the primary coil and a second input terminal of the power source.
    Type: Application
    Filed: March 16, 2017
    Publication date: September 28, 2017
    Inventors: Woo Young Lee, Gyu Yeong Choe, Min Jung Kim, Min Kook Kim, Jong Eun Byeon, Min Hyuck Kang, Dong Gyun Woo, Byoung Kuk Lee, Dong Myoung Joo
  • Publication number: 20170264143
    Abstract: A wireless power transmission pad for transmitting wireless power to a reception pad including a secondary coil includes: a rectangular-shaped primary coil having an X-width defined in an x-direction and a Y-width defined in a y-direction and having a central space; a ferrite coupled to the primary coil; and a housing supporting the primary coil and the ferrite. A first cross-sectional area of a first portion including the X-width of the primary coil is smaller than a second cross-sectional area of a second portion including the Y-width of the primary coil.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 14, 2017
    Inventors: Woo Young Lee, Gyu Yeong Choe, Byoung Kuk Lee, Min Kook Kim, Dong Myoung Joo, Jong Eun Byeon, Min Hyuck Kang, Dong Gyun Woo, Min Jung Kim
  • Patent number: 9725001
    Abstract: A charging device according to an exemplary embodiment of the present invention may include: a battery adapted and configured to store a DC voltage, first and second motors adapted and configured to operate as a motor or a generator, first and second inverters adapted and configured to operate the first and second motors, a voltage transformer adapted and configured to boost the DC voltage of the battery to supply it to the first and second inverters and boosts the DC voltage of the inverter to supply it to the battery, and a charging controller adapted and configured to operate the first and second inverters as a booster or operate the voltage transformer as a buck booster according to a voltage that is input through a neutral point of the first and second motors and the voltage of the battery.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: August 8, 2017
    Assignees: Hyundai Motor Company, Research & Business Foundation Sungkyunkwan University
    Inventors: Seong Yeop Lim, Gu Bae Kang, Jeongbin Yim, Byungsoon Min, Byoung-Kuk Lee, Seung-Min Shin, Dong-Hee Kim, Dong-Gyun Woo
  • Publication number: 20150258903
    Abstract: A charging device according to an exemplary embodiment of the present invention may include: a battery adapted and configured to store a DC voltage, first and second motors adapted and configured to operate as a motor or a generator, first and second inverters adapted and configured to operate the first and second motors, a voltage transformer adapted and configured to boost the DC voltage of the battery to supply it to the first and second inverters and boosts the DC voltage of the inverter to supply it to the battery, and a charging controller adapted and configured to operate the first and second inverters as a booster or operate the voltage transformer as a buck booster according to a voltage that is input through a neutral point of the first and second motors and the voltage of the battery.
    Type: Application
    Filed: April 14, 2015
    Publication date: September 17, 2015
    Inventors: Seong Yeop Lim, Gu Bae Kang, Jeongbin Yim, Byungsoon Min, Byoung-Kuk Lee, Seung-Min Shin, Dong-Hee Kim, Dong-Gyun Woo
  • Publication number: 20130147431
    Abstract: A charging device according to an exemplary embodiment of the present invention may include: a battery adapted and configured to store a DC voltage, first and second motors adapted and configured to operate as a motor or a generator, first and second inverters adapted and configured to operate the first and second motors, a voltage transformer adapted and configured to boost the DC voltage of the battery to supply it to the first and second inverters and boosts the DC voltage of the inverter to supply it to the battery, and a charging controller adapted and configured to operate the first and second inverters as a booster or operate the voltage transformer as a buck booster according to a voltage that is input through a neutral point of the first and second motors and the voltage of the battery.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 13, 2013
    Applicants: Research & Business Foundation Sungkyunkwan University, HYUNDAI MOTOR COMPANY
    Inventors: Seong Yeop Lim, Gu Bae Kang, Jeongbin Yim, Byungsoon Min, Byoung-Kuk Lee, Seung-Min Shin, Dong-Hee Kim, Dong-Gyun Woo