Patents by Inventor Dong Hee Anna Choi

Dong Hee Anna Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10290895
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Set forth herein are methods for preparing novel structures, including dense thin free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: May 14, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Publication number: 20190103630
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: August 13, 2018
    Publication date: April 4, 2019
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20190020059
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 17, 2019
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20180342764
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Patent number: 10103405
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 16, 2018
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Publication number: 20180076480
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Application
    Filed: June 23, 2017
    Publication date: March 15, 2018
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Kian KERMAN, Mohit SINGH, Adrian WINOTO
  • Publication number: 20180069263
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Application
    Filed: October 11, 2017
    Publication date: March 8, 2018
    Inventors: Tim HOLME, Niall DONNELLY, Sriram IYER, Adrian WINOTO, Mohit SINGH, Will HUDSON, Dong Hee Anna CHOI, Oleh KARPENKO, Kian KERMAN
  • Publication number: 20170346135
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: April 6, 2017
    Publication date: November 30, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Patent number: 9806372
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 31, 2017
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko, Kian Kerman
  • Publication number: 20170263976
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: April 17, 2017
    Publication date: September 14, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20170187067
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: February 10, 2017
    Publication date: June 29, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20170179522
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: February 10, 2017
    Publication date: June 22, 2017
    Inventors: Dong Hee Anna CHOI, Niall DONNELLY, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Mohit SINGH, Adrian WINOTO
  • Publication number: 20160056500
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: September 11, 2015
    Publication date: February 25, 2016
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Publication number: 20150200420
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Application
    Filed: November 3, 2014
    Publication date: July 16, 2015
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko, Kian Kerman
  • Publication number: 20150099190
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 9, 2015
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko