Patents by Inventor Dongsung Hong

Dongsung Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456008
    Abstract: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 27, 2022
    Assignee: Seagate Technology LLC
    Inventors: Anusha Natarajarathinam, Yongjun Zhao, Hui Brickner, Dongsung Hong
  • Patent number: 11015256
    Abstract: Methods of forming near field transducers (NFTs) including electrodepositing a plasmonic material.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 25, 2021
    Assignee: Seagate Technology LLC
    Inventors: Lien Lee, Jie Gong, Venkatram Venkatasamy, Yongjun Zhao, Lijuan Zou, Dongsung Hong, Ibro Tabakovic, Mark Ostrowski
  • Publication number: 20190198046
    Abstract: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Anusha Natarajarathinam, Yongjun Zhao, Hui Brickner, Dongsung Hong
  • Patent number: 10224064
    Abstract: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: March 5, 2019
    Assignee: Seagate Technology LLC
    Inventors: Anusha Natarajarathinam, Yongjun Zhao, Hui Brickner, Dongsung Hong
  • Publication number: 20190048487
    Abstract: Methods of forming near field transducers (NFTs) including electrodepositing a plasmonic material.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Lien Lee, Jie Gong, Venkatram Venkatasamy, Yongjun Zhao, Lijuan Zou, Dongsung Hong, Ibro Tabakovic, Mark Ostrowski
  • Patent number: 10100422
    Abstract: Methods of forming near field transducers (NFTs) including electrodepositing a plasmonic material.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 16, 2018
    Assignee: Seagate Technology LLC
    Inventors: Lien Lee, Jie Gong, Venkatram Venkatasamy, Yongjun Zhao, Lijuan Zou, Dongsung Hong, Ibro Tabakovic, Mark Ostrowski
  • Publication number: 20170194022
    Abstract: A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Inventors: Anusha Natarajarathinam, Yongjun Zhao, Hui Brickner, Dongsung Hong
  • Patent number: 9385089
    Abstract: When opaque films are deposited on semi-conductor wafers, underlying alignment marks may be concealed. The re-exposure of such alignment marks is one source of resulting surface topography. In accordance with one implementation, alignment marks embedded in a wafer may be exposed by removing material from one or more layers and by replacing such material with a transparent material. In accordance with another implementation, the amount of material removed in an alignment mark recovery process may be mitigated by selectively ashing or etching above a stop layer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 5, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Dongsung Hong, Lijuan Zou, Daniel Sullivan, Lily Horng Youtt
  • Patent number: 9378757
    Abstract: The disclosed methods enable the production of plasmonic near-field transducers that are useful in heat-assisted magnetic recording. The plasmonic near-field transducers have an enlarged region and a peg region. The peg region includes a peg region in proximity to an air-bearing surface above a recording medium and also includes a flared region between and in contact with the enlarged region and the peg region. The flared region can act as a heat sink and can lower the thermal resistance of the peg portion of the near-field transducer, thus reducing its temperature.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: June 28, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Yongjun Zhao, Dongsung Hong, Lijuan Zou, Mark Ostrowski
  • Patent number: 9343089
    Abstract: Nanoimprint lithography can be used in a variety of ways to improve resolution, pattern fidelity and symmetry of microelectronic structures for thin film head manufacturing. For example, write poles, readers, and near-field transducers can be manufactured with tighter tolerances that improve the performance of the microelectronic structures. Further, entire bars of thin film heads can be manufactured simultaneously using nanoimprint lithography, which reduces or eliminated alignment errors between neighboring thin film heads in a bar of thin film heads.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 17, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Andrew David Habermas, Dongsung Hong, Daniel Boyd Sullivan
  • Publication number: 20150083601
    Abstract: Methods of forming near field transducers (NFTs) including electrodepositing a plasmonic material.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Lien Lee, Jie Gong, Venkatram Venkatasamy, Yongjun Zhao, Lijuan Zou, Dongsung Hong, Ibro Tabakovic, Mark Ostrowski
  • Publication number: 20140254338
    Abstract: Nanoimprint lithography can be used in a variety of ways to improve resolution, pattern fidelity and symmetry of microelectronic structures for thin film head manufacturing. For example, write poles, readers, and near-field transducers can be manufactured with tighter tolerances that improve the performance of the microelectronic structures. Further, entire bars of thin film heads can be manufactured simultaneously using nanoimprint lithography, which reduces or eliminated alignment errors between neighboring thin film heads in a bar of thin film heads.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Seagate Technology LLC
    Inventors: Andrew David Habermas, Dongsung Hong, Daniel Boyd Sullivan
  • Publication number: 20140251948
    Abstract: The disclosed methods enable the production of plasmonic near-field transducers that are useful in heat-assisted magnetic recording. The plasmonic near-field transducers have an enlarged region and a peg region. The peg region includes a peg region in proximity to an air-bearing surface above a recording medium and also includes a flared region between and in contact with the enlarged region and the peg region. The flared region can act as a heat sink and can lower the thermal resistance of the peg portion of the near-field transducer, thus reducing its temperature.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: Seagate Technology LLC
    Inventors: Yongjun Zhao, Dongsung Hong, Lijuan Zou, Mark Ostrowski
  • Publication number: 20140210113
    Abstract: When opaque films are deposited on semi-conductor wafers, underlying alignment marks may be concealed. The re-exposure of such alignment marks is one source of resulting surface topography. In accordance with one implementation, alignment marks embedded in a wafer may be exposed by removing material from one or more layers and by replacing such material with a transparent material. In accordance with another implementation, the amount of material removed in an alignment mark recovery process may be mitigated by selectively ashing or etching above a stop layer.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dongsung Hong, Lijuan Zou, Daniel Sullivan, Lily Horng Youtt
  • Patent number: 6834262
    Abstract: A mask simulation process is introduced into a conventional OPC procedure, prior to simulation of a photoresist pattern. Reticle simulation may be achieved using very short wavelengths of light as compared to the mask feature size. Alternatively, reticle simulation may be made through adjustments in a computer aided design process.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: December 21, 2004
    Assignee: Cypress Semiconductor Corporation
    Inventors: Artur E. Balasinski, Dianna L. Coburn, Keeho E. Kim, Dongsung Hong