Patents by Inventor Doug G. PEDERSEN

Doug G. PEDERSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10293925
    Abstract: Systems, methods, and computer program products for directional force weighting of an active vibration control system involve arranging a plurality of force generators in an array, identifying individual component forces corresponding to force outputs of each of the plurality of force generators, determining a combination of the individual component forces that will produce a desired total force vector, and adjusting the outputs of each of the plurality of force generators such that the combination of the individual component forces are at least substantially similar to the desired force vector.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: May 21, 2019
    Assignee: LORD Corporation
    Inventors: Mark R. Jolly, Paul R. Black, Doug A. Swanson, Doug G. Pedersen
  • Patent number: 9878781
    Abstract: Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 30, 2018
    Assignee: LORD Corporation
    Inventors: Doug A. Swanson, Paul R. Black, Jihan Ryu, Stephen C. Southward, Doug G. Pedersen
  • Patent number: 9701402
    Abstract: Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: July 11, 2017
    Assignee: LORD Corporation
    Inventors: Doug A. Swanson, Paul R. Black, Jihan Ryu, Stephen C. Southward, Doug G. Pedersen
  • Publication number: 20170008620
    Abstract: Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Application
    Filed: May 24, 2016
    Publication date: January 12, 2017
    Inventors: Doug A. SWANSON, Paul R. BLACK, Jihan RYU, Steve C. SOUTHWARD, Doug G. PEDERSEN
  • Publication number: 20150375857
    Abstract: Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 31, 2015
    Inventors: Doug A. SWANSON, Paul R. BLACK, Jihan RYU, Steve C. SOUTHWARD, Doug G. PEDERSEN
  • Publication number: 20150353191
    Abstract: Systems, methods, and computer program products for directional force weighting of an active vibration control system involve arranging a plurality of force generators in an array, identifying individual component forces corresponding to force outputs of each of the plurality of force generators, determining a combination of the individual component forces that will produce a desired total force vector, and adjusting the outputs of each of the plurality of force generators such that the combination of the individual component forces are at least substantially similar to the desired force vector.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 10, 2015
    Inventors: Mark R. JOLLY, Paul R. BLACK, Doug A. SWANSON, Doug G. PEDERSEN