Patents by Inventor Douglas Buchberger

Douglas Buchberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170154797
    Abstract: Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. A pedestal may be disposed within the processing volume and a first electrode may be coupled to the pedestal. A moveable stem may extend through the chamber body opposite the pedestal and a second electrode may be coupled to the moveable stem. In certain embodiments, a fluid containment ring may be coupled to the pedestal and a dielectric containment ring may be coupled to the second electrode.
    Type: Application
    Filed: January 6, 2016
    Publication date: June 1, 2017
    Inventors: Viachslav Babayan, Douglas A. Buchberger, JR., Qiwei Liang, Ludovic Godet, Srinivas D. Nemani, Daniel J. Woodruff, Randy Harris, Robert B. Moore
  • Patent number: 9666466
    Abstract: A substrate support assembly includes a ceramic puck and a thermally conductive base having an upper surface that is bonded to a lower surface of the ceramic puck. The thermally conductive base includes a plurality of thermal zones and a plurality of thermal isolators that extend from the upper surface of the thermally conductive base towards a lower surface of the thermally conductive base, wherein each of the plurality of thermal isolators provides approximate thermal isolation between two of the plurality of thermal zones at the upper surface of the thermally conductive base.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: May 30, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Vijay D. Parkhe, Konstantin Makhratchev, Jason Della Rosa, Hamid Noorbakhsh, Brad L. Mays, Douglas A. Buchberger, Jr.
  • Patent number: 9570275
    Abstract: The present disclosure generally comprises a heated showerhead assembly that may be used to supply processing gases into a processing chamber. The processing chamber may be an etching chamber. When processing gas is evacuated from the processing chamber, the uniform processing of the substrate may be difficult. As the processing gas is pulled away from the substrate and towards the vacuum pump, the plasma, in the case of etching, may not be uniform across the substrate. Uneven plasma may lead to uneven etching. To prevent uneven etching, the showerhead assembly may be separated into two zones each having independently controllable gas introduction and temperature control. The first zone corresponds to the perimeter of the substrate while the second zone corresponds to the center of the substrate. By independently controlling the temperature and the gas flow through the showerhead zones, etching uniformity of the substrate may be increased.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: February 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Olga Regelman, Kallol Bera, Douglas A. Buchberger, Jr., Paul Brillhart
  • Publication number: 20160357107
    Abstract: Methods disclosed herein provide apparatus and method for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 8, 2016
    Inventors: Douglas A. BUCHBERGER, JR., Sang Ki NAM, Viachslav BABAYAN, Christine Y OUYANG, Ludovic GODET, Srinivas D. NEMANI
  • Publication number: 20160314942
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Publication number: 20160314937
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Publication number: 20160314936
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Publication number: 20160314940
    Abstract: Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: James D. CARDUCCI, Hamid TAVASSOLI, Ajit BALAKRISHNA, Zhigang CHEN, Andrew NGUYEN, Douglas A. BUCHBERGER, JR., Kartik RAMASWAMY, Shahid RAUF, Kenneth S. COLLINS
  • Publication number: 20160276150
    Abstract: Methods of processing a substrate are provided herein. In some embodiments, a method of processing a substrate disposed in a processing chamber includes: (a) depositing a layer of material on a substrate by exposing the substrate to a first reactive species generated from a remote plasma source and to a first precursor, wherein the first reactive species reacts with the first precursor; and (b) treating all, or substantially all, of the deposited layer of material by exposing the substrate to a plasma generated within the processing chamber from a second plasma source; wherein at least one of the remote plasma source or the second plasma source is pulsed to control periods of depositing and periods of treating.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 22, 2016
    Inventors: Jun Xue, Ludovic Godet, Srinivas Nemani, Michael W. Stowell, Qiwei Liang, Douglas A. Buchberger
  • Publication number: 20160169593
    Abstract: Apparatus for controlling the thermal uniformity of a substrate are provided. The thermal uniformity of the substrate may be controlled to be more uniform or the thermal uniformity of the substrate may be controlled to be non-uniform in a desired pattern. In some embodiments, an apparatus for controlling the thermal uniformity of a substrate includes: a substrate support having a support surface to support a substrate thereon; and a flow path disposed within the substrate support to flow a heat transfer fluid beneath the support surface, wherein the flow path comprises a first portion and a second portion, each portion having a substantially equivalent axial length, wherein the first portion is spaced about 2 mm to about 10 mm from the second portion, and wherein the first portion provides a flow of heat transfer fluid in a direction opposite a flow of heat transfer fluid of the second portion.
    Type: Application
    Filed: February 22, 2016
    Publication date: June 16, 2016
    Inventors: KALLOL BERA, XIAOPING ZHOU, DOUGLAS A. BUCHBERGER, JR., ANDREW NGUYEN, HAMID TAVASSOLI, SURAJIT KUMAR, SHAHID RAUF
  • Patent number: 9358702
    Abstract: An unseasoned substrate support assembly includes a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further includes an upper surface of the ceramic body having a first portion proximate to a center of the upper surface of the ceramic body and having a first roughness profile and a second portion distal from the center of the upper surface of the ceramic body and having a second roughness profile with a lower roughness than the first roughness profile, wherein areas of the first and second portions are based on radial distances from the center of the ceramic body.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: June 7, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Sumanth Banda, Jennifer Y. Sun, Douglas A Buchberger, Jr., Shane C. Nevil
  • Publication number: 20160155612
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 2, 2016
    Inventors: Chetan MAHADESWARASWAMY, Walter R. MERRY, Sergio Fukuda SHOJI, Chunlei ZHANG, Yashaswini PATTAR, Duy D. NGUYEN, Tina TSONG, Shane C. NEVIL, Douglas A. BUCHBERGER, JR., Fernando M. SILVEIRA, Brad L. MAYS, Kartik RAMASWAMY, Hamid NOORBAKHSH
  • Patent number: 9338871
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chetan Mahadeswaraswamy, Walter R. Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini B. Pattar, Duy D. Nguyen, Tina Tsong, Shane C. Nevil, Douglas A. Buchberger, Jr., Fernando M. Silveira, Brad L. Mays, Kartik Ramaswamy, Hamid Noorbakhsh
  • Patent number: 9267742
    Abstract: Apparatus for controlling the thermal uniformity of a substrate. In some embodiments, the thermal uniformity of the substrate is controlled to be more uniform. In some embodiments, the thermal uniformity of the substrate is controlled to be non-uniform in a desired pattern. In some embodiments, an apparatus for controlling thermal uniformity of a substrate includes a substrate support having a support surface to support a substrate thereon. A plurality of flow paths having a substantially equivalent fluid conductance are disposed within the substrate support to flow a heat transfer fluid beneath the support surface.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 23, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Xiaoping Zhou, Douglas A. Buchberger, Jr., Andrew Nguyen, Hamid Tavassoli, Surajit Kumar, Shahid Rauf
  • Patent number: 9248509
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: February 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hamid Tavassoli, Surajit Kumar, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Publication number: 20150371877
    Abstract: Apparatus for processing a substrate is disclosed herein. In some embodiments, a substrate support may include a substrate support having a support surface for supporting a substrate the substrate support having a central axis; a first electrode disposed within the substrate support to provide RF power to a substrate when disposed on the support surface; an inner conductor coupled to the first electrode about a center of a surface of the first electrode opposing the support surface, wherein the inner conductor is tubular and extends from the first electrode parallel to and about the central axis in a direction away from the support surface of the substrate support; an outer conductor disposed about the inner conductor; and an outer dielectric layer disposed between the inner and outer conductors, the outer dielectric layer electrically isolating the outer conductor from the inner conductor. The outer conductor may be coupled to electrical ground.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: XING LIN, DOUGLAS A. BUCHBERGER, JR., XIAOPING ZHOU, ANDREW NGUYEN, ANCHEL SHEYNER
  • Patent number: 9214315
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20150316941
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Application
    Filed: December 22, 2014
    Publication date: November 5, 2015
    Inventors: Fernando M. SILVEIRA, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Patent number: 9123762
    Abstract: Apparatus for processing a substrate is disclosed herein. In some embodiments, a substrate support may include a substrate support having a support surface for supporting a substrate the substrate support having a central axis; a first electrode disposed within the substrate support to provide RF power to a substrate when disposed on the support surface; an inner conductor coupled to the first electrode about a center of a surface of the first electrode opposing the support surface, wherein the inner conductor is tubular and extends from the first electrode parallel to and about the central axis in a direction away from the support surface of the substrate support; an outer conductor disposed about the inner conductor; and an outer dielectric layer disposed between the inner and outer conductors, the outer dielectric layer electrically isolating the outer conductor from the inner conductor. The outer conductor may be coupled to electrical ground.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 1, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xing Lin, Douglas A. Buchberger, Jr., Xiaoping Zhou, Andrew Nguyen, Anchel Sheyner
  • Patent number: 8980044
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer evaporators inside respective inner and outer zones of the electrostatic chuck and a refrigeration loop having respective inner and cuter expansion valves for controlling flow of coolant through the inner and outer evaporators respectively. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: March 17, 2015
    Assignee: BE Aerospace, Inc.
    Inventors: Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan