Patents by Inventor Douglas E. Paradis

Douglas E. Paradis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6067163
    Abstract: The invention provides a process for evaluating a substrate, such as a wafer of semiconductive material having a semiconductor die at least partially formed thereon, as to the condition of an overlying film, such as an overlying film of photoresist that is applied to the semiconductor die prior to metal etching and ion implantation. The condition of the film is evaluated by exposing at least a portion of the substrate to electromagnetic radiation and evaluating the wave profile of the reflected beam.In instances where it is desirable to evaluate the substrate for the presence or absence or photoresist, ultraviolet, or near ultraviolet light having a wavelength of about 240-650 nm can be used, as such wavelengths are strongly absorbed by photoresist. In contrast, areas of the substrate that are not covered by photoresist will not significantly absorb ultraviolet or near ultraviolet radiation.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: May 23, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Richard L. Guldi, Douglas E. Paradis
  • Patent number: 6054367
    Abstract: A method of forming a semiconductor device and the device, the method comprising the steps of providing a silicon substrate of predetermined conductivity type having a layer of silicon oxide with a first mask thereon, implanting a first impurity of the predetermined conductivity type into the substrate in unmasked regions of the substrate, masking the substrate except for a small region immediately adjacent the first mask with a second mask, implanting a second impurity of the predetermined conductivity type into the substrate in the unmasked regions of the substrate to cause some of the impurity to extend in the substrate beneath the first mask, removing the second mask, oxidizing the substrate with the first mask thereon to form a bird's beak extending beneath the first mask with the impurities extending along the bird's beak both beneath and external to the first mask and completing fabrication of a semiconductor device on substrate.
    Type: Grant
    Filed: September 28, 1993
    Date of Patent: April 25, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Emily A. Groves, Wayne E. Bailey, Douglas E. Paradis, Homer K. Cheung
  • Patent number: 5978078
    Abstract: A system (10, 110, 210) for detecting particles (144) on a surface of a substrate-supporting chuck (14, 114, 214) including an inspection subsystem (128, 130, 131, 116, 250, 252, 222, 216) for analyzing the surface of the chuck (14, 114, 214) to determine if any particles (144) are thereon, a movable table (16, 116, 216) for holding the chuck (14, 114, 214) to inspect it and for moving the chuck (14, 114, 214) during inspection, and a control unit (22, 122, 222) for moving the movable table (16, 116, 216) relative to the inspection subsystem (128, 130, 131, 116, 250, 252, 222, 216) to inspect the surface of the chuck (14, 114, 214) and to produce an indication signal if a particle (144) is detected on the surface of the chuck (14, 114, 214).
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: November 2, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Sima Salamati-Saradh, Douglas E. Paradis
  • Patent number: 5958517
    Abstract: A system (12) for delivering spin-on-glass (SOG) to a substrate (14) has a spin chuck (16) for spinning a substrate (14), a delivery nozzle (18, 118, 218, 318, 418) having an interior conduit (419), a delivery nozzle-positioning subsystem (62) coupled to the delivery nozzle (18, 118, 218, 318, 418) for selectively positioning the delivery nozzle (18, 118, 218, 318, 418) over the spin chuck (16) for delivery of SOG, a SOG supply line (60, 160, 360) for supplying SOG, a cleaning fluid supply line (22, 122, 322) for supplying a cleaning fluid used to remove dried SOG, and a valve subsystem (20, 120, 320) fluidly coupled to the SOG supply line (60, 160, 360), cleaning-fluid supply line (22, 122, 322), and delivery nozzle (18, 118, 218, 318, 418) for selectively delivering SOG or a cleaning fluid through the interior conduit (419) of the delivery nozzle (18, 118, 218, 318, 418). A cleaning station 466 may be used to clean an exterior (421) of the nozzle (18, 118 218, 318, 418).
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: September 28, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Frank D. Poag, Richard L. Guldi, Douglas E. Paradis, Paul C. Hashim
  • Patent number: 5841543
    Abstract: The invention provides a process for evaluating a substrate, such as a wafer of semiconductive material having a semiconductor die at least partially formed thereon, as to the condition of an overlying film, such as an overlying film of photoresist that is applied to the semiconductor die prior to metal etching and ion implantation. The condition of the film is evaluated by exposing at least a portion of the substrate to electromagnetic radiation and evaluating the wave profile of the reflected beam. In instances where it is desirable to evaluate the substrate for the presence or absence of photoresist, ultraviolet or near ultraviolet light having a wavelength of about 240-650 nm can be used, as such wavelengths are strongly absorbed by photoresist. In contrast, areas of the substrate that are not covered by photoresist will not significantly absorb ultraviolet or near ultraviolet radiation.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: November 24, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Richard L. Guldi, Douglas E. Paradis
  • Patent number: 5839455
    Abstract: Methods and apparatus are providing for cleansing contaminants from substrates, such as semiconductor wafer handling implements, and thereby reduce the incidence of contamination of semiconductor devices being assembled upon the semiconductor wafers.In one aspect of the invention, a substrate such as a semiconductor cassette or other semiconductor wafer handling implement, is inserted into a chamber that is substantially isolated from a surrounding environment. A pressurized, and optionally purified, cleansing medium is directed against at least one surface of the substrate to dislodge contaminants from the substrate surface. Dislodged contaminants are evacuated with negative pressure from the chamber. In a preferred aspect of the invention, the cleansing medium is an inert gas, such as nitrogen, and is applied to the substrate at a pressure from about 10 p.s.i. to about 100 or more p.s.i.
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: November 24, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Virgil Q. Turner, William D. Light, Hilario T. Trevino, Richard L. Guldi, Frank Poag, Douglas E. Paradis
  • Patent number: 5551165
    Abstract: Methods are providing for cleansing contaminants from substrates, such as semiconductor wafer handling implements, and thereby reduce the incidence of contamination of semiconductor devices being assembled upon the semiconductor wafers. In one aspect of the invention, a substrate such as a semiconductor cassette or other semiconductor wafer handling implement, is inserted into a chamber that is substantially isolated from a surrounding environment. A pressurized, and optionally purified, cleansing medium is directed against at least one surface of the substrate to dislodge contaminants from the substrate surface. Dislodged contaminants are evacuated with negative pressure from the chamber. In a preferred aspect of the invention, the cleansing medium is an inert gas, such as nitrogen, and is applied to the substrate at a pressure from about 10 p.s.i. to about 100 or more p.s.i.
    Type: Grant
    Filed: April 13, 1995
    Date of Patent: September 3, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Virgil Q. Turner, William D. Light, Hilario T. Trevino, Richard L. Guldi, Frank Poag, Douglas E. Paradis