Patents by Inventor Douglas Martin Linn

Douglas Martin Linn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130096719
    Abstract: A control interface for inputting data into a controller and/or controlling a robotic system is displayed on a human-to-machine interface device. The specific configuration of the control interface displayed is based upon the task to be performed, the capabilities of the robotic system, the capabilities of the human-to-machine interface device, and the level of expertise of the user. The specific configuration of the control interface is designed to optimize the interaction between the user and the robotic system based upon the above described criteria.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Adam M. Sanders, Matthew J. Reiland, Douglas Martin Linn, Nathaniel Quillin
  • Patent number: 8276958
    Abstract: A bidirectional tendon terminator that has particular application for terminating a tendon that actuates a finger in a robotic arm. The tendon terminator includes a cylindrical member having an internal channel through which a single continuous piece of the tendon extends. The internal channel of the tendon terminator includes a widened portion. A ball is placed in the tendon strands, which causes the tendon to expand, and the ball is positioned within the widened portion of the channel. Pulling on the tendon operates to either open or close the finger of the robotic arm depending on which direction the tendon is pulled. In one specific embodiment, the cylinder includes two cylindrical pieces that are coupled together so that the ball can be positioned within the channel and the cylindrical member has an entire circumference of material.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 2, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Douglas Martin Linn, Lyndon Bridgwater
  • Patent number: 8260460
    Abstract: A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: September 4, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Adam M. Sanders, Matthew J. Reiland, Muhammad E. Abdallah, Douglas Martin Linn, Robert Platt
  • Patent number: 8255079
    Abstract: A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 28, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Myron A. Diftler
  • Patent number: 8244402
    Abstract: A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 14, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James W. Wells, Neil David Mc Kay, Suhas E. Chelian, Douglas Martin Linn, Charles W. Wampler, II, Lyndon Bridgwater
  • Patent number: 8056423
    Abstract: A technique that determines the tension in a tendon using a conduit reaction force applied to an end of a conduit through which the tendon is threaded. Any suitable tendon tension sensor can be employed that uses the conduit reaction force for this purpose. In one non-limiting embodiment, the tendon tension sensor includes a cylindrical strain gauge element and a force member mounted to an end of the conduit. The force member includes a cylindrical portion having a bore and a plate portion, where the cylindrical portion is inserted into a bore in the strain gauge element. The tendon is threaded through the strain gauge element and the force member. A strain gauge is mounted to the strain gauge element and measures the reaction force when tension on the tendon causes the strain gauge element to be pushed against the force member.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: November 15, 2011
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E. Abdallah, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Charles W. Wampler, II, Robert Platt
  • Publication number: 20110089708
    Abstract: A mechanical gripper adapted for grasping a plurality of differing objects, and comprising a plurality of fingers, wherein each finger includes at least one variable impedance member comprising an active material element, the element, when activated and deactivated, undergoes a reversible change in impedance, and the change in impedance enables the gripper to be advantageously reconfigured, and/or locked in a reconfigured state.
    Type: Application
    Filed: October 17, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Nilesh D. Mankame, Douglas Martin Linn, James W. Wells, Alan L. Browne, Nancy L. Johnson
  • Publication number: 20110067521
    Abstract: A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Douglas Martin Linn, Robert O. Ambrose, Myron A. Diftler, Scott R. Askew, Robert Platt, Joshua S. Mehling, Nicolaus A. Radford, Philip A. Strawser, Lyndon Bridgwater, Charles W. Wampler, II, Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Adam M. Sanders, David M. Reich, Brian Hargrave, Adam H. Parsons, Frank Noble Permenter, Donald R. Davis
  • Publication number: 20110068595
    Abstract: A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administraion, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Brian Hargrave, Scott R. Askew, Michael C. Valvo
  • Publication number: 20110071670
    Abstract: A mechanical implement adapted for use in an autonomously functioning device, such as a robot arm, and including an active material, such as shape memory polymer, element that when activated and/or deactivated is operable to modify the mechanical impedance of a joint or link in the device.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Nilesh D. Mankame, Douglas Martin Linn, James W. Wells, Alan L. Browne, Nancy L. Johnson
  • Publication number: 20110071678
    Abstract: A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Rpresented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, David M. Reich, Lyndon Bridgwater, Douglas Martin Linn, Scott R. Askew`, Myron A. Diftler, Robert Platt, Brian Hargrave, Michael C. Valvo, Muhammad E. Abdallah, Frank Noble Permenter, Joshua S. Mehling
  • Publication number: 20110071675
    Abstract: A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, HRL Laboratories, LLC
    Inventors: James W. Wells, Neil David Mc Kay, Suhas E. Chelian, Douglas Martin Linn, Charles W. Wampler, II, Lyndon Bridgwater
  • Publication number: 20110071676
    Abstract: A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A As Represented by the Administrator of the National Aeronautics and space Administration
    Inventors: Adam M. Sanders, Matthew J. Reiland, Muhammad E. Abdallah, Douglas Martin Linn, Robert Platt
  • Publication number: 20110071664
    Abstract: A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Myron A. Diftler
  • Patent number: 7784363
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 31, 2010
    Assignees: GM Global Technology Operations, Inc., The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith
  • Publication number: 20100116079
    Abstract: A bidirectional tendon terminator that has particular application for terminating a tendon that actuates a finger in a robotic arm. The tendon terminator includes a cylindrical member having an internal channel through which a single continuous piece of the tendon extends. The internal channel of the tendon terminator includes a widened portion. A ball is placed in the tendon strands, which causes the tendon to expand, and the ball is positioned within the widened portion of the channel. Pulling on the tendon operates to either open or close the finger of the robotic arm depending on which direction the tendon is pulled. In one specific embodiment, the cylinder includes two cylindrical pieces that are coupled together so that the ball can be positioned within the channel and the cylindrical member has an entire circumference of material.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The USA as represented by the Administrator of the National Aeronautics & Space Administration
    Inventors: CHRIS A. IHRKE, DOUGLAS MARTIN LINN, LYNDON BRIDGWATER
  • Publication number: 20100121222
    Abstract: A technique that determines the tension in a tendon using a conduit reaction force applied to an end of a conduit through which the tendon is threaded. Any suitable tendon tension sensor can be employed that uses the conduit reaction force for this purpose. In one non-limiting embodiment, the tendon tension sensor includes a cylindrical strain gauge element and a force member mounted to an end of the conduit. The force member includes a cylindrical portion having a bore and a plate portion, where the cylindrical portion is inserted into a bore in the strain gauge element. The tendon is threaded through the strain gauge element and the force member. A strain gauge is mounted to the strain gauge element and measures the reaction force when tension on the tendon causes the strain gauge element to be pushed against the force member.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE U.S.A. AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: MUHAMMAD E. ABDALLAH, Lyndon Bridgwater, Myron A. Diftler, Douglas Martin Linn, Charles W. Wampler, II, Robert Platt
  • Publication number: 20100077867
    Abstract: A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., THE UNITED STATES OF AMERICA
    Inventors: Chris A. Ihrke, Myron A. Diftler, Douglas Martin Linn, Robert Platt, Bryan Kristian Griffith
  • Patent number: 6941189
    Abstract: A positioner for use in a tooling apparatus, the positioner including a tool, at least one servo-motor for actuating said tool, a controller for controlling the servo-motor, nonvolatile memory in the controller, and a calibration stored in the nonvolatile memory, the calibration including compensation parameters for the build variance of the positioner.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: September 6, 2005
    Assignee: General Motors Corporation
    Inventors: Douglas Martin Linn, Gerald Charles Rieck, Charles Weldon Wampler, II, Kevin U. Carriere
  • Patent number: D628609
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 7, 2010
    Assignees: GM Global Technology Operations, Inc., NASA Lyndon B. Johnson Space Center, Oceaneering Space Systems
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Robert O. Ambrose, Joshua S Mehling, Myron A Diftler, Adam H Parsons, Nicolaus A Radford, Lyndon Bridgwater, Heather Bibby