Patents by Inventor Douglas Miles Noni, Jr.

Douglas Miles Noni, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170283308
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Application
    Filed: May 3, 2017
    Publication date: October 5, 2017
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, JR., James Joseph Price, Sara Jean Sick
  • Patent number: 9670088
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: June 6, 2017
    Assignee: Corning Incorporated
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, Jr., James Joseph Price, Sara Jean Sick
  • Patent number: 9643884
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: May 9, 2017
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, Jr., Natesan Venkataraman
  • Publication number: 20150336843
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, JR., James Joseph Price, Sara Jean Sick
  • Patent number: 9186844
    Abstract: The disclosure is directed to methods of forming edge protection on glass and in particular on glass that has been chemically strengthened by ion exchange. In one embodiment an edge protection or bumper is placed about the glass's edge(s) in a manner such that it does not cover the face(s) of the glass, and the bumper and glass are such that a cavity is formed between the glass edge(s) and the bumper. An adhesive is injected into the cavity, the air in the cavity is vented, and the adhesive is cured to firmly attach the bumper to the glass edge(s). In another embodiment a mold is placed about the glass edge(s), and the mold and glass edge(s) are such that a cavity is formed between the glass edge(s) and the mold. A polymer-forming fluid is injected into the cavity and then cured. The mold is then removed.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 17, 2015
    Assignee: Corning Incorporated
    Inventors: Robin S Balcom, Douglas Miles Noni, Jr.
  • Publication number: 20150273727
    Abstract: Honeycomb extrudate is made by extruding a plasticized ceramic-forming batch material to form a length of wet honeycomb extrudate, transferring the extrudate to a support tray, and transferring the tray and extrudate to a dryer, the tray being capable of contactingly supporting greater than one-third of the circumferential surface of the wet extrudate. The extrudate is subject to reduced handling damage, e.g. from forces of gravitational and/or lateral acceleration arising during transfer.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 1, 2015
    Inventors: Douglas Miles Noni, JR., Wei Xu
  • Publication number: 20150218045
    Abstract: An apparatus and method for edge treating the cut edge of a glass sheet is provided which has an a heat source and a cooling system. The glass piece has an active area and a vacant edge portion. The heat source is positioned to direct heat to the vacant edge portion and raise the temperature of the vacant edge portion of the glass piece to between 350 C and 600 C. The cooling system maintains the temperature of the active area of the glass piece below 250 C. Additionally, the cooling system includes a heat sink assembly which is thermally coupled to the active area of the glass piece.
    Type: Application
    Filed: August 28, 2013
    Publication date: August 6, 2015
    Inventors: Robin Stuart Balcom, Douglas Miles Noni, JR., Gary Graham Squier, Elizabeth Marie Vileno, Kevin Lee Wasson
  • Publication number: 20150140299
    Abstract: Ion exchangeable boroaluminosilicate glasses having high levels of intrinsic scratch resistance are provided. The glasses include the network formers SiO2, B2O3, and Al2O3, and at least one of Li2O, Na2O, and K2O. When ion exchanged these glasses may have a Knoop scratch initiation threshold of at least about 40 Newtons (N). These glasses may also be used to form a clad layer for a glass laminate in which the core layer has a coefficient of thermal expansion that is greater than that of the clad glass.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Adam James Ellison, John Christopher Mauro, Douglas Miles Noni, JR., Lynn Marie Thirion, Natesan Venkataraman
  • Publication number: 20150051060
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, JR., Natesan Venkataraman
  • Patent number: 8857216
    Abstract: A burner module comprising a burner gas inlet block, a lower flow plate, an upper flow plate, a burner gas flow disperser, and a burner gas discharge block. The burner gas inlet block, the burner gas flow disperser, and the burner gas discharge block each comprising a plurality of channels separated by partitions. The partitions of the burner gas flow disperser and the burner gas discharge block comprising a knife edge. The upper flow plate and the lower flow plate each comprising a plurality of pressure holes in fluid communication with the plurality of channels. Additionally, the method of forming a glass sheet or ribbon using the disclosed burner module and a glass sheet or ribbon formed using the method.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventors: Muluwork Geremew, Daniel Warren Hawtof, Douglas Miles Noni, Jr.
  • Publication number: 20140035204
    Abstract: The disclosure is directed to methods of forming edge protection on glass and in particular on glass that has been chemically strengthened by ion exchange. In one embodiment an edge protection or bumper is placed about the glass's edge(s) in a manner such that it does not cover the face(s) of the glass, and the bumper and glass are such that a cavity is formed between the glass edge(s) and the bumper. An adhesive is injected into the cavity, the air in the cavity is vented, and the adhesive is cured to firmly attach the bumper to the glass edge(s). In another embodiment a mold is placed about the glass edge(s), and the mold and glass edge(s) are such that a cavity is formed between the glass edge(s) and the mold. A polymer-forming fluid is injected into the cavity and then cured. The mold is then removed.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Robin S. Balcom, Douglas Miles Noni, JR.
  • Publication number: 20130323463
    Abstract: A burner module comprising a burner gas inlet block, a lower flow plate, an upper flow plate, a burner gas flow disperser, and a burner gas discharge block. The burner gas inlet block, the burner gas flow disperser, and the burner gas discharge block each comprising a plurality of channels separated by partitions. The partitions of the burner gas flow disperser and the burner gas discharge block comprising a knife edge. The upper flow plate and the lower flow plate each comprising a plurality of pressure holes in fluid communication with the plurality of channels. Additionally, the method of forming a glass sheet or ribbon using the disclosed burner module and a glass sheet or ribbon formed using the method.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventors: Muluwork Geremew, Daniel Warren Hawtof, Douglas Miles Noni, JR.
  • Publication number: 20130280464
    Abstract: The application is directed to a product or material or article made of glass where the edge of the glass is protected by the application of a solid pre-formed polymer material that is contained within the thickness of the glass. The protected glass articles have a Figure of Merit in the range of 0.4 to 20, and the edge)s) of the articles have been found to withstand impact velocities of up to 500 mm/sec. The solid pre-formed polymer material that is contained within the thickness of the glass is thus applied to the edge, and it is applied such that it does not protrude into the top and bottom viewable planes, surfaces or faces (the large surface areas) of glass. The solid pre-formed polymer material, the protective material that is contained within the thickness of the glass, may be called herein a “bumper.
    Type: Application
    Filed: January 6, 2012
    Publication date: October 24, 2013
    Inventor: Douglas Miles Noni, JR.
  • Patent number: 8438876
    Abstract: As a precursor to forming a glass sheet, a soot layer is formed on a deposition surface using a roll-to-roll glass soot deposition process. A soot layer-separating device is configured to bring a stream of gas into contact with at least a portion of a free surface of the soot layer. The impinging gas stream affects local thermal expansion stresses at the soot layer/deposition surface interface, which separates the soot layer from the deposition surface.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 14, 2013
    Assignee: Corning Incorporated
    Inventor: Douglas Miles Noni, Jr.
  • Patent number: 8062733
    Abstract: A high-silica glass sheet has an average thickness of less than 150 microns and an average surface roughness over one or both of its two major surfaces of less than 1 nm. The glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet may comprise a plurality of substantially parallel surface protrusions, which are visible only when a major surface of the glass sheet is viewed at an angle sufficiently removed from normal incidence.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Daniel Warren Hawtof, Douglas Miles Noni, Jr.
  • Publication number: 20110232330
    Abstract: As a precursor to forming a glass sheet, a soot layer is formed on a deposition surface using a roll-to-roll glass soot deposition process. A soot layer-separating device is configured to bring a stream of gas into contact with at least a portion of a free surface of the soot layer. The impinging gas stream affects local thermal expansion stresses at the soot layer/deposition surface interface, which separates the soot layer from the deposition surface.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 29, 2011
    Inventor: Douglas Miles Noni, JR.
  • Publication number: 20100291346
    Abstract: A high-silica glass sheet has an average thickness of less than 150 microns and an average surface roughness over one or both of its two major surfaces of less than 1 nm. The glass sheet is formed using a roll-to-roll glass soot deposition and sintering process. The glass sheet may comprise a plurality of substantially parallel surface protrusions, which are visible only when a major surface of the glass sheet is viewed at an angle sufficiently removed from normal incidence.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Inventors: Daniel Warren Hawtof, Douglas Miles Noni, JR.