Patents by Inventor Douglas Sheffield

Douglas Sheffield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11786729
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: October 17, 2023
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20210346709
    Abstract: Therapy systems with quantified biomarker targeting, including for epilepsy treatment, and associated systems and methods, are disclosed. A representative computer-based method for establishing epilepsy treatment parameters for a patient includes receiving multiple indications of interictal EEG biomarkers over a period of time and processing the multiple indications to produce a processed biomarker. The processed biomarker is then used to identify at least one target location at the patient's brain to receive an electrical therapy signal to reduce or eliminate epileptic activity in the patient, and at least one additional signal delivery parameter in accordance with which the electrical therapy signal is to be delivered.
    Type: Application
    Filed: April 26, 2021
    Publication date: November 11, 2021
    Inventors: Kent Leyde, Brian Lundstrom, Gregory Worrell, Squire Matthew Stead, Warren Douglas Sheffield
  • Publication number: 20210308456
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 7, 2021
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 11065449
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 20, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20180359332
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 6, 2017
    Publication date: December 13, 2018
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20180167482
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 6, 2017
    Publication date: June 14, 2018
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9808627
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 7, 2017
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9643019
    Abstract: A system for providing alerts of neurological events occurring in a human subject is provided. The system includes: a monitoring module adapted to detect and sample a neurological signal; an event detection module coupled to the monitoring module for detecting one or more types of predetermined reportable events based on the detected neurological signal; and an alert module coupled to the event detection module, wherein upon the detection of a reportable event by the event detection module, said alert module selects a first alert contact from a plurality of contacts contained in a contact list, and generates a first alert communication to the first alert contact.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 9, 2017
    Assignee: CYBERONICS, INC.
    Inventors: Jason A. Higgins, Michael Bland, Kent W. Leyde, W. Douglas Sheffield, John F. Harris, David M. Himes
  • Publication number: 20160067496
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9186510
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 17, 2015
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20140222113
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: December 9, 2013
    Publication date: August 7, 2014
    Applicant: Advanced Neuromodulation Systems, Inc., d/b/a St. Jude Medical Neuromodulation Division
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8606361
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20120041498
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: July 8, 2011
    Publication date: February 16, 2012
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8073546
    Abstract: The following disclosure describes several methods and apparatus for electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. For example, the method can include selecting a stimulation site by generating an intended neural activity by triggering a neural signal in or from the impaired body part and detecting a region of the brain in which a response neural activity occurs in reaction to the neural signal.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: December 6, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: W. Douglas Sheffield, Andrew D. Firlik
  • Patent number: 8050767
    Abstract: Methods for treating and/or collecting information regarding neurological disorders, including language disorders, are disclosed. A method in accordance with one embodiment directing a patient to perform a language-based task, directing information to be collected, with the information corresponding to a level of neural activity in the patient's brain while the patient performs the language-based task, and, based at least in part on the information, selecting a stimulation site within the patient's skull for receiving an electrode coupleable to an electrical current. In further embodiments, at least one electrode can be placed at the stimulation site, and the patient's language disorder can be reduced by applying electrical stimulation directly to the stimulation site via the at least one electrode.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: November 1, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: W. Douglas Sheffield, Alvaro Pascual-Leone
  • Publication number: 20110201944
    Abstract: A system for providing alerts of neurological events occurring in a human subject is provided. The system includes: a monitoring module adapted to detect and sample a neurological signal; an event detection module coupled to the monitoring module for detecting one or more types of predetermined reportable events based on the detected neurological signal; and an alert module coupled to the event detection module, wherein upon the detection of a reportable event by the event detection module, said alert module selects a first alert contact from a plurality of contacts contained in a contact list, and generates a first alert communication to the first alert contact.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Inventors: Jason A. Higgins, Michael Bland, Kent W. Leyde, W. Douglas Sheffield, John F. Harris, David M. Himes
  • Patent number: 7983762
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20110092882
    Abstract: Systems and methods for patient interactive neural stimulation and/or chemical substance delivery are disclosed. A method in accordance with one embodiment of the invention includes affecting a target neural population of the patient by providing to the patient at least one of an electromagnetic signal and a chemical substance. The method can further include detecting at least one characteristic of the patient, with the characteristic at least correlated with the patient's performance of an adjunctive therapy task that is performed in association with affecting the target neural population. The method can still further include controlling at least one parameter in accordance with which the target neural population is affected, based at least in part on the detected characteristic.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Inventors: Andrew D. Firlik, Bradford Evan Gliner, W. Douglas Sheffield, Leif R. Sloan
  • Publication number: 20110004270
    Abstract: The following disclosure describes several methods and apparatus for intracranial electrical stimulation to treat or otherwise effectuate a change in neural-functions of a patient. Several embodiments of methods in accordance with the invention are directed toward enhancing or otherwise inducing a lasting change in neural activity to effectuate a particular neural-function. Such lasting change in neural activity is defined as “neuroplasticity.” The methods in accordance with the invention can be used to treat brain damage (e.g., stroke, trauma, etc.), brain disease (e.g., Alzheimer's, Pick's, Parkinson's, etc.), and/or brain disorders (e.g., epilepsy, depression, etc.). The methods in accordance with the invention can also be used to enhance neural-function of normal, healthy brains (e.g., learning, memory, etc.), or to control sensory functions (e.g., pain).
    Type: Application
    Filed: July 12, 2010
    Publication date: January 6, 2011
    Inventors: W. Douglas Sheffield, Andrew D. Firlik
  • Patent number: 7856264
    Abstract: Systems and methods for patient interactive neural stimulation and/or chemical substance delivery are disclosed. A method in accordance with one embodiment of the invention includes affecting a target neural population of the patient by providing to the patient at least one of an electromagnetic signal and a chemical substance. The method can further include detecting at least one characteristic of the patient, with the characteristic at least correlated with the patient's performance of an adjunctive therapy task that is performed in association with affecting the target neural population. The method can still further include controlling at least one parameter in accordance with which the target neural population is affected, based at least in part on the detected characteristic.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: December 21, 2010
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Andrew D. Firlik, Bradford Evan Gliner, W. Douglas Sheffield, Leif R. Sloan