Patents by Inventor Duane A. Fasen

Duane A. Fasen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6967073
    Abstract: An image sensor system and methods of making such a system are described. The image sensor system includes a color filter array that is formed by a color filter process that incorporates a bottom antireflection coating. The bottom antireflection coating forms a protective layer that protects exposed areas of the active image sensing device structure during formation of the color filter array and, thereby, preserves the intrinsic transmission characteristics of the active image sensing device structure. The bottom antireflection coating also reduces degradation of metal structures (e.g., bonding pads) and pixel edges at the exposed surface of the active image sensing device structure. In addition, the bottom antireflection coating provides a reliable adhesive surface for the color filter array, substantially eliminating lifting of the color filter array resist structures.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: November 22, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Duane Fasen, Jack D. Meyer, Cheryl Bailey, John H. Stanback, Kari Hansen
  • Patent number: 6765276
    Abstract: An image sensor system and methods of making such a system are described. The image sensor system includes a color filter array that is formed by a color filter process that incorporates a bottom antireflection coating. The bottom antireflection coating forms a protective layer that protects exposed areas of the active image sensing device structure during formation of the color filter array and, thereby, preserves the intrinsic transmission characteristics of the active image sensing device structure. The bottom antireflection coating also reduces degradation of metal structures (e.g., bonding pads) and pixel edges at the exposed surface of the active image sensing device structure. In addition, the bottom antireflection coating provides a reliable adhesive surface for the color filter array, substantially eliminating lifting of the color filter array resist structures.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: July 20, 2004
    Assignee: Agilent Technologies, inc.
    Inventors: Duane Fasen, Jack D. Meyer, Cheryl Bailey, John H. Stanback, Kari Hansen
  • Publication number: 20040002178
    Abstract: An image sensor system and methods of making such a system are described. The image sensor system includes a color filter array that is formed by a color filter process that incorporates a bottom antireflection coating. The bottom antireflection coating forms a protective layer that protects exposed areas of the active image sensing device structure during formation of the color filter array and, thereby, preserves the intrinsic transmission characteristics of the active image sensing device structure. The bottom antireflection coating also reduces degradation of metal structures (e.g., bonding pads) and pixel edges at the exposed surface of the active image sensing device structure. In addition, the bottom antireflection coating provides a reliable adhesive surface for the color filter array, substantially eliminating lifting of the color filter array resist structures.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 1, 2004
    Inventors: Duane Fasen, Jack D. Meyer, Cheryl Bailey, John H. Stanback, Kari Hansen
  • Publication number: 20030038293
    Abstract: An image sensor system and methods of making such a system are described. The image sensor system includes a color filter array that is formed by a color filter process that incorporates a bottom antireflection coating. The bottom antireflection coating forms a protective layer that protects exposed areas of the active image sensing device structure during formation of the color filter array and, thereby, preserves the intrinsic transmission characteristics of the active image sensing device structure. The bottom antireflection coating also reduces degradation of metal structures (e.g., bonding pads) and pixel edges at the exposed surface of the active image sensing device structure. In addition, the bottom antireflection coating provides a reliable adhesive surface for the color filter array, substantially eliminating lifting of the color filter array resist structures.
    Type: Application
    Filed: August 23, 2001
    Publication date: February 27, 2003
    Inventors: Duane Fasen, Jack D. Meyer, Cheryl Bailey, John H. Stanback, Kari Hansen
  • Publication number: 20030038326
    Abstract: An image sensor system and methods of making such a system are described. The image sensor system includes a color filter array that is formed by a color filter process that incorporates a bottom antireflection coating. The bottom antireflection coating forms a protective layer that protects exposed areas of the active image sensing device structure during formation of the color filter array and, thereby, preserves the intrinsic transmission characteristics of the active image sensing device structure. The bottom antireflection coating also reduces degradation of metal structures (e.g., bonding pads) and pixel edges at the exposed surface of the active image sensing device structure. In addition, the bottom antireflection coating provides a reliable adhesive surface for the color filter array, substantially eliminating lifting of the color filter array resist structures.
    Type: Application
    Filed: April 26, 2002
    Publication date: February 27, 2003
    Inventors: Duane Fasen, Jack D. Meyer, Cheryl Bailey, John H. Stanback, Kari Hansen
  • Patent number: 5635966
    Abstract: This invention provides an apparatus and method of fabrication thereof for an inkjet printhead with an improved ink flow path between an ink reservoir and vaporization chambers in an inkjet printhead. In the preferred embodiment, a barrier layer containing ink channels and vaporization chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains two linear arrays of heater elements, and each orifice in the nozzle member is associated with a vaporization chamber and heater element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the vaporization chambers. The apparatus is fabricated without using ion implant technology.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: June 3, 1997
    Assignee: Hewlett-Packard Company
    Inventors: Brian J. Keefe, Steven W. Steinfield, Winthrop D. Childers, Paul H. McClelland, Kenneth E. Trueba, Duane A. Fasen, Jerome E. Beckmann, John H. Stanback, Ulrich E. Hess, James R. Hulings, Larry S. Metz, Charles E. Moore, Eldukar V. Bhaskar
  • Patent number: 5635968
    Abstract: A printhead includes a substrate with an ink feed aperture extending from a first surface to a second surface and a plurality of heater resistors disposed on it. Primitive groupings of the resistors are coupled to associated group power sources. An ink barrier layer is deposited on the substrate to create ink firing chambers for each resistor. One wall of the ink barrier has a constricted opening through which ink is supplied from the ink feed aperture. A plurality of transistors are disposed in the substrate with each transistor output coupled to an associated one of the resistors and each input coupled to one of a plurality of addressing signal lines. The number of addressing signal lines is equal to the number of resistors in a primitive grouping.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: June 3, 1997
    Assignee: Hewlett-Packard Company
    Inventors: Eldurkar V. Bhaskar, Marzio Leban, Ulrich E. Hess, Niels J. Nielsen, Kenneth E. Trueba, Ellen Tappon, Duane A. Fasen
  • Patent number: 5159353
    Abstract: An improved thermal inkjet printhead having MOSFET drive transistors incorporated therein. The gate of each MOSFET transistor is formed by applying a layer of silicon dioxide onto a silicon substrate, applying a layer of silicon nitride onto the silicon dioxide, and applying a layer of polycrystalline silicon onto the silicon nitride. Portions of the substrate surrounding the gate are oxidized, forming field oxide regions. Drain and source regions are then conventionally formed, followed by the application of a protective dielectric layer onto the field oxide, drain, source, and gate. A resistive layer is deposited on the dielectric layer and directly connected to the source, drain, and gate. A conductive layer is deposited on a portion of the resistive layer, ultimately forming both covered and uncovered regions thereof. The uncovered region functions as a heating resistor, and the covered regions function as electrical contacts to the transistor and resistor.
    Type: Grant
    Filed: July 2, 1991
    Date of Patent: October 27, 1992
    Assignee: Hewlett-Packard Company
    Inventors: Duane A. Fasen, Jerome E. Beckmann, John H. Stanback, Ulrich E. Hess, James R. Hulings, Larry S. Metz, Charles E. Moore
  • Patent number: 5122812
    Abstract: An improved thermal inkjet printhead and manufacturing method in which driver circuitry (e.g. MOSFET transistors), heating resistors, and a specialized arrangement of conductive elements are used. A substrate is provided having a plurality of drive transistors thereon. A layer of resistive material (e.g. a tantalum-aluminum mixture) is deposited on the substrate and directly connected to the source, gate, and drain of at least one transistor. A layer of conductive metal (e.g. aluminum) is deposited on a portion of the resistive layer, forming both covered and uncovered regions thereof. The uncovered region functions as a heating resistor, and the covered regions function as direct electrical contacts to the transistor, thereby minimizing the number of conductive elements in the printhead. The resistor is positioned beneath an ink-retaining cavity, and is designed to heat ink therein for expulsion through an orifice plate.
    Type: Grant
    Filed: January 3, 1991
    Date of Patent: June 16, 1992
    Assignee: Hewlett-Packard Company
    Inventors: Ulrich E. Hess, Duane A. Fasen