Patents by Inventor Dustin Zachary Austin

Dustin Zachary Austin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915923
    Abstract: A plasma processing system is provided. The system includes a hydrogen gas supply and a hydrocarbon gas supply and a processing chamber. The system includes a first mass flow controller (MFC) for controlling hydrogen gas flow into the processing chamber and a second MFC for controlling hydrocarbon gas flow into the processing chamber. The system includes a plasma source for generating plasma at the processing chamber. The plasma is for etching SnO2. The system includes a controller for regulating the first MFC and the second MFC such that a ratio of hydrocarbon gas flow to the hydrogen gas flow into the processing chamber is between 1% and 60% so that when SnH4 is produced during said etching SnO2. The SnH4 is configured to react with hydrocarbon gas to produce an organotin compound that is volatilizable in a reaction that is more kinetically favorable than SnH4 decomposition into Sn powder.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 27, 2024
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu
  • Publication number: 20230307290
    Abstract: Methods of forming air gaps in hole and trench structures are disclosed. The methods may be used to form buried voids, i.e., voids for which the top is below the top of the adjacent features. The methods include inhibition of the hole or trench structures and selective deposition at the top of the structure forming an air gap within the structures. In some embodiments, the methods are to reduce intra-level capacitance in semiconductor devices.
    Type: Application
    Filed: June 28, 2021
    Publication date: September 28, 2023
    Inventors: Joseph R. ABEL, Bart J. VAN SCHRAVENDIJK, Ian John CURTIN, Douglas Walter AGNEW, Dustin Zachary AUSTIN, Awnish GUPTA
  • Patent number: 11717866
    Abstract: Various embodiments include methods and chemistries to etch metal-oxide films. In one embodiment, a method of etching tin oxide (SnO2) films includes using thionyl chloride (SOCl2) chemistry to produce an etch rate of the SnO2 films of up to 10-times higher as compared with Cl2 chemistry for similar flow-rates and process conditions, and gettering oxygen species from the SnO2 films by using the SOCl2, thereby forming volatile SO2 and volatile SnCl4 to provide human safety and machine safety and operations. Other methods, chemistries, and techniques are disclosed.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: August 8, 2023
    Assignee: Lam Research Corporation
    Inventors: Akhil N. Singhal, Dustin Zachary Austin, Alon Ganany, Daniel Boatright
  • Publication number: 20230245896
    Abstract: Methods and apparatuses for depositing dielectric films into features on semiconductor substrates are described herein. Methods involve depositing dielectric films by using controlled thermal chemical vapor deposition, with periodic passivation operations and densification to modulate film properties.
    Type: Application
    Filed: July 21, 2021
    Publication date: August 3, 2023
    Inventors: Awnish Gupta, Bart J. Van Schravendijk, Frank Loren Pasquale, Adrien LaVoie, Jason Alexander Varnell, Praneeth Ramasagaram, Joseph R. Abel, Jennifer Leigh Petraglia, Dustin Zachary Austin
  • Publication number: 20230175117
    Abstract: Methods of filling a gap with a dielectric material including using an inhibitor plasma during deposition. The inhibitor plasma increases a nucleation barrier of the deposited film. When the inhibitor plasma interacts with material in the feature, the material at the bottom of the feature receives less plasma treatment than material located closer to a top portion of the feature or in field. Deposition at the top of the feature is then selectively inhibited and deposition in lower portions of the feature proceeds with less inhibition or without being inhibited. As a result, bottom-up fill is enhanced, which can create a sloped profile that mitigates the seam effect and prevents void formation. In some embodiments, an underlying material at the top of the feature is protected using an integrated liner. In some embodiments, a hydrogen chemistry is used during gap fill to reduce seam formation.
    Type: Application
    Filed: March 31, 2021
    Publication date: June 8, 2023
    Inventors: Dustin Zachary AUSTIN, Ian John CURTIN, Joseph R. ABEL, Bart J. VAN SCHRAVENDIJK, Seshasayee VARADARAJAN, Adrien LAVOIE, Jeremy David FIELDS, Pulkit AGARWAL, Shiva Sharan BHANDARI
  • Publication number: 20230038880
    Abstract: Processing methods and apparatus for depositing a protective layer on internal surfaces of a reaction chamber are provided. One method may include depositing, while no wafers are present in the reaction chamber having interior surfaces, a first layer of protective material onto the interior surfaces, the interior surfaces comprising a first material, processing, after the depositing the first layer, a portion of a batch of wafers within a reaction chamber, measuring an amount of the first material in the reaction chamber during processing the portion of the batch of wafers, or on one of the wafers in the portion of the batch of wafers, determining that the first amount exceeds a threshold, and depositing, in response to determining that the first amount exceeds the threshold and while no wafers are present in the reaction chamber, a second layer of protective material onto the interior surfaces of the reaction chamber.
    Type: Application
    Filed: December 17, 2020
    Publication date: February 9, 2023
    Inventors: Alon Ganany, Dustin Zachary Austin, Rachel Batzer, Akhil Singhal
  • Publication number: 20220258216
    Abstract: Various embodiments include methods and chemistries to etch metal-oxide films. In one embodiment, a method of etching tin oxide (SnO2) films includes using thionyl chloride (SOCl2) chemistry to produce an etch rate of the SnO2 films of up to 10-times higher as compared with Cl2 chemistry for similar flow-rates and process conditions, and gettering oxygen species from the SnO2 films by using the SOCl2, thereby forming volatile SO2 and volatile SnCl4 to provide human safety and machine safety and operations. Other methods, chemistries, and techniques are disclosed.
    Type: Application
    Filed: May 6, 2022
    Publication date: August 18, 2022
    Inventors: Akhil N. Singhal, Dustin Zachary Austin, Alon Ganany, Daniel Boatright
  • Publication number: 20220197147
    Abstract: A method for patterning a substrate includes providing a substrate, and depositing a multi-layer stack including N layers on the substrate. N is an integer greater than one. The N layers include N mean free paths for secondary electrons, respectively. The method includes depositing a photoresist layer on the multi-layer stack, wherein the N mean free paths converge in the photoresist layer. Another method for patterning a substrate includes providing a substrate and depositing a layer on the substrate. The layer includes varying mean free paths for secondary electrons. The method includes depositing a photoresist layer on the layer. The varying mean free paths for secondary electrons converge in the photoresist layer.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 23, 2022
    Inventors: Andrew LIANG, Nader SHAMMA, Rich WISE, Akhil SINGHAL, Arpan Pravin MAHOROWALA, Gregory BLACHUT, Dustin Zachary AUSTIN
  • Publication number: 20210308726
    Abstract: Various embodiments include methods and chemistries to etch metal-oxide films. In one embodiment, a method of etching tin oxide (SnO2) films includes using thionyl chloride (SOCl2) chemistry to produce an etch rate of the SnO2 films of up to 10-times higher as compared with Cl2 chemistry for similar flow-rates and process conditions, and gettering oxygen species from the SnO2 films by using the SOCl2, thereby forming volatile SO2 and volatile SnCl4 to provide human safety and machine safety and operations. Other methods, chemistries, and techniques are disclosed.
    Type: Application
    Filed: September 20, 2019
    Publication date: October 7, 2021
    Inventors: Akhil N. Singhal, Dustin Zachary Austin, Alon Ganany, Daniel Boatright
  • Patent number: 11031244
    Abstract: A method for improving EUV lithographic patterning of SnO2 layers is provided. One method embodiment includes introducing a hydrophobic surface treatment compound into a processing chamber for modifying a surface of an SnO2 layer. The modification increases the hydrophobicity of the SnO2 layer. The method also provides for depositing a photoresist layer on the surface of the SnO2 layer via spin coating. The modification of the surface of the SnO2 layer enhances adhesion of contact between the photoresist and the SnO2 layer during and after spin coating.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: June 8, 2021
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Nader Shamma, Dustin Zachary Austin
  • Publication number: 20210057208
    Abstract: A plasma processing system is provided. The system includes a hydrogen gas supply and a hydrocarbon gas supply and a processing chamber. The system includes a first mass flow controller (MFC) for controlling hydrogen gas flow into the processing chamber and a second MFC for controlling hydrocarbon gas flow into the processing chamber. The system includes a plasma source for generating plasma at the processing chamber. The plasma is for etching SnO2. The system includes a controller for regulating the first MFC and the second MFC such that a ratio of hydrocarbon gas flow to the hydrogen gas flow into the processing chamber is between 1% and 60% so that when SnH4 is produced during said etching SnO2. The SnH4 is configured to react with hydrocarbon gas to produce an organotin compound that is volatilizable in a reaction that is more kinetically favorable than SnH4 decomposition into Sn powder.
    Type: Application
    Filed: November 5, 2020
    Publication date: February 25, 2021
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu
  • Patent number: 10840082
    Abstract: A method for cleaning SnO2 residue from a processing chamber is provided as one embodiment. The method embodiment includes introducing hydrocarbon and hydrogen gas at a ratio of 1%-60% into a plasma processing system. The SnO2 residue is etched from surfaces the processing chamber using plasma generated by a plasma source, which produces SnH4 gas. The SnH4 gas reacts with the hydrocarbon gas to produce an organotin compound that is volatilizable. The method further provides for evacuating the processing chamber of the organotin compound. The introduction of the hydrocarbon gas along with the hydrogen gas at the ratio of 1%-60% reduces a rate of SnH4 gas decomposition into Sn powder.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: November 17, 2020
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu
  • Publication number: 20200058492
    Abstract: A method for improving EUV lithographic patterning of SnO2 layers is provided. One method embodiment includes introducing a hydrophobic surface treatment compound into a processing chamber for modifying a surface of an SnO2 layer. The modification increases the hydrophobicity of the SnO2 layer. The method also provides for depositing a photoresist layer on the surface of the SnO2 layer via spin coating. The modification of the surface of the SnO2 layer enhances adhesion of contact between the photoresist and the SnO2 layer during and after spin coating.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Inventors: Akhil Singhal, Nader Shamma, Dustin Zachary Austin
  • Publication number: 20200051807
    Abstract: A method for cleaning SnO2 residue from a processing chamber is provided as one embodiment. The method embodiment includes introducing hydrocarbon and hydrogen gas at a ratio of 1%-60% into a plasma processing system. The SnO2 residue is etched from surfaces the processing chamber using plasma generated by a plasma source, which produces SnH4 gas. The SnH4 gas reacts with the hydrocarbon gas to produce an organotin compound that is volatilizable. The method further provides for evacuating the processing chamber of the organotin compound. The introduction of the hydrocarbon gas along with the hydrogen gas at the ratio of 1%-60% reduces a rate of SnH4 gas decomposition into Sn powder.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu