Patents by Inventor Dylan J. Boday

Dylan J. Boday has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890342
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Nathaniel Park, Rudy J. Wojtecki, Yang Chuan, Ashlynn Lee, Zhen Chang Liang, Shaoqiong Liu, Yi Yan Yang
  • Patent number: 11702508
    Abstract: In an embodiment is provided a polymer that includes a plurality of N-J-N or N—C—S repeating units, wherein each J is independently a carbon atom, an alkyl group, or an aryl group; a plurality of hydrophilic groups bonded with the repeating units; and a plurality of hydrophobic groups bonded with the hydrophilic groups and the repeating units. In another embodiment is provided hydrogels of such polymers. The hydrogels may be used as delivery vehicles for various payloads. In another embodiment is provided methods of forming such polymers.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: July 18, 2023
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 11621210
    Abstract: A thermal interface material (TIM) includes a modified release layer having an organosilane-coated surface covalently bound to a TIM formulation layer. The modified release layer may be formed by applying an organosilane (e.g., vinyltriethoxysilane) to the surface of a thermally conductive release layer (e.g., aluminum foil). The organosilane reacts with hydroxyl groups on the surface of the thermally conductive release layer. The TIM formulation layer may be formed by applying a TIM formulation (e.g., a graphite TIM formulation) containing an unsaturated monomer (e.g., methyl acrylate) to the organosilane-coated surface of the modified release layer, and then curing the TIM formulation so that the unsaturated monomer of the TIM formulation reacts with the organosilane-coated surface of the modified release layer.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: April 4, 2023
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
  • Patent number: 11447507
    Abstract: Materials which react with (“scavenge”) sulfur compounds, such as hydrogen sulfide and mercaptans, are useful for limiting sulfur-induced corrosion. Surface-modified particles incorporating a hexahydrotriazine moiety are disclosed and used as sulfur scavengers. These surface-modified particles are used a filter media in fixed filter systems and as additives to fluids including sulfur compounds. The hexahydrotriazine moiety can react with sulfur compounds in such a manner as to bind sulfur atoms to the surface-modified particles, thus allowing removal of the sulfur atoms from fluids such as crude oil, natural gas, hydrocarbon combustion exhaust gases, sulfur polluted air and water. The surface-modified particles may, in general, be sized to allow separation of the particles from the process fluid by sedimentation, size-exclusion filtration or the like.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: September 20, 2022
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 11241389
    Abstract: Materials and methods for preparing a payload-containing microcapsule with walls that have hexahydrotriazine (HT) and/or hemiaminal (HA) structures are disclosed. To an HT small molecule or a HA small molecule, or a combination thereof, in a solvent is added a cross-linking agent, NH4Cl, and a copolymer. The solution is acidified, and a payload agent is added. The HT small molecule and HA small molecule may have orthogonal functionality.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: February 8, 2022
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Brandon M. Kobilka, Jason T. Wertz, Rudy J. Wojtecki
  • Patent number: 11130845
    Abstract: In an embodiment, an article of manufacture includes a first component, a second component, and a thermal interface material. The thermal interface material is disposed between the first component and the second component and includes a polymeric phase-change material. In another embodiment, an article of manufacture includes a first component, a second component, and a thermal interface material disposed between the first component and the second component, the thermal interface material including a polymeric phase-change material, the polymeric phase-change material including a block copolymer formed from a diene, the diene formed from a vinyl-terminated fatty acid monomer having a chemical formula C2H4—R—C(O)OH and an ethylene glycol monomer having a chemical formula C2nH4n+2On+1.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 28, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Timothy C. Mauldin
  • Patent number: 11120827
    Abstract: According to one embodiment, a magnetic recording medium includes: a substrate; an underlayer positioned above the substrate; a magnetic recording layer positioned above the underlayer; and a plurality of conductive polymers dispersed within the substrate, the underlayer, the magnetic recording layer, the substrate and the underlayer, the substrate and the magnetic recording layer, the underlayer and the magnetic recording layer, or the underlayer, the magnetic recording layer, and the substrate. In addition, the conductive polymers are dispersed such that a concentration of the conductive polymers has a gradient in a single one of the layers in a thickness direction.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: September 14, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Diana J. Hellman, Icko E. T. Iben, Mark A. Lantz
  • Patent number: 11098159
    Abstract: In an embodiment, a polymeric material includes a plurality of hemiaminal units bonded together by a first linkage and a second linkage, wherein the first linkage is thermally stable and resistant to bases and the second linkage is thermally degradable and degradable by a base. In another embodiment, a method of forming nanoporous materials includes forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 24, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 11102892
    Abstract: A carbene-coated metal foil is produced by applying an N-heterocyclic carbene (NHC) compound to one or more surfaces of a metal foil (e.g., an electrodeposited copper foil having a surface that is smooth and non-oxidized). The NHC compound contains a matrix-reactive pendant group that includes at least one of a vinyl-, allyl-, acrylic-, methacrylic-, styrenic-, amine-, amide- and epoxy-containing moiety capable of reacting with a base polymer (e.g., a vinyl-containing resin such as a polyphenylene oxide/triallyl-isocyanurate (PPO/TAIC) composition). The NHC compound may be synthesized by, for example, reacting a halogenated imidazolium salt (e.g., 1,3-bis(4-bromo-2,6-dimethylphenyl)-4,5-dihydro-1H-imidazol-3-ium chloride) and an organostannane having a vinyl-containing moiety (e.g., tributyl(vinyl)stannane) in the presence of a palladium catalyst.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: August 24, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
  • Patent number: 11067568
    Abstract: Described are embodiments of an invention for detecting target antigens in a biological sample using a sample assembly. Detection may be accomplished by performing a method comprising: sweeping a head module over the sample assembly, wherein said head module includes at least one magneto-resistive read sensor configured to detect target antigens via nanoparticles within the sample assembly; and detecting at least one particular antigen among the target antigens. Preferably, detecting the target antigens via the nanoparticles is based at least in part on detecting unique magnetic properties of particular nanoparticles specifically associated with different types of the target antigens. Detection using a magnetic read/write head in the sample assembly facilitates automation of sample detection with high speed and fidelity. Corresponding systems are also disclosed.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Stephen L. Schwartz, Anna W. Topol, Sandra L. Waters, Daniel J. Winarski
  • Patent number: 11066519
    Abstract: This disclosure describes new compositions and methods related to photoresponsive poly(hexahydrotriazines) and related polymers. In an embodiment, a method of patterning a substrate includes forming a liquid poly(hemiaminal) material by a process that includes forming a reaction mixture comprising a polar solvent, paraformaldehyde, and an aminobenzene compound having photoreactive groups, and heating the reaction mixture at a temperature up to 50° C. The method further includes applying the liquid poly(hemiaminal) material to a substrate; patterning the liquid poly(hemiaminal) material with UV light; and curing the liquid poly(hemiaminal) material to form a cured poly(hexahydrotriazine) polymer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Jason T. Wertz, Rudy J. Wojtecki
  • Patent number: 11045552
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Yang Chuan, Ashlynn Lee, Zhen Chang Liang, Shaoqiong Liu, Yi Yan Yang
  • Patent number: 11041048
    Abstract: Polyhemiaminal (PHA) and polyhexahydrotriazine (PHT) materials are modified by 1,4 conjugate addition chemical reactions to produce a variety of molecular architectures comprising pendant groups and bridging segments. The materials are formed by a method that includes heating a mixture comprising solvent(s), paraformaldehyde, aromatic amine groups, aliphatic amine Michael donors, and Michael acceptors, such as acrylates. The reaction mixtures may be used to prepare polymer pre-impregnated materials and composites containing PHT matrix resin.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 22, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20210145970
    Abstract: A stimulus-responsive micellar carrier, methods that may be associated with making a stimulus-responsive micellar carrier, and methods that may be associated with using a stimulus-responsive micellar carrier are disclosed. The stimulus-responsive micellar carrier comprises a cargo molecule, and a linear block copolymer having a hydrophilic block connected to a hydrophobic block by a stimulus-responsive junction moiety. The micellar carrier can be supplied to a patient body for therapeutic purposes, such as the treatment of cancerous tissue. A method of preparing or obtaining a stimulus-responsive micellar carrier may include preparing a polyethylene glycol material having an acetal end group and then preparing a block copolymer by forming a reaction mixture including the polyethylene glycol material, a cyclic carbonate monomer, and a base.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 20, 2021
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Nathaniel PARK, Rudy J. WOJTECKI, Yang CHUAN, Ashlynn LEE, Zhen Chang LIANG, Shaoqiong LIU, Yi Yan YANG
  • Patent number: 10975217
    Abstract: Silica-based organogels, including aerogels, incorporating hexahydrotriazine and/or hemiaminal species are described. These organo-silica gel materials can have applications as insulating materials. In a particular example, an aerogel includes silica groups and a hexahydrotriazine moiety with at least one nitrogen atom that is covalently linked to a silica group. Methods of making such silica-based organogels are also described.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Jason T. Wertz, Rudy J. Wojtecki
  • Patent number: 10975201
    Abstract: In some embodiments, a product, such as a thermoset, has a polyhexahydrotriazine and a self-polymerized cross-linkable polymer. In some embodiments, a product is the reaction product of a diamine, an aldehyde, and a compound having an ?,?-unsaturated electron withdrawing moiety.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 10968320
    Abstract: In an example, a thermal interface material includes a polymeric phase-change material.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 6, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Timothy C. Mauldin
  • Patent number: 10828883
    Abstract: Thermally cross-linkable photo-hydrolyzable inkjet printable polymers are used to print microfluidic channels layer-by-layer on a substrate. In one embodiment, for each layer, an inkjet head deposits droplets of a mixture of hydrophobic polymer and cross-linking agent in a pattern lying outside a two-dimensional layout of the channels, and another inkjet head deposits droplets of a mixture of poly(tetrahydropyranyl methacrylate) PTHPMA (or another hydrophobic polymer which hydrolyzes to form a hydrophilic material), cross-linking agent, and a photoacid generator (PAG) in a pattern lying inside the two-dimensional layout of the channels. After all layers are printed, flood exposure of the entire substrate to UV radiation releases acid from the PAG which hydrolyzes PTHPMA to form hydrophilic poly(methacrylic acid) PMAA, thereby rendering the PTHPMA regions hydrophilic. The layers of these now-hydrophilic patterned regions together define the microfluidic channels. The cross-linking agent (e.g.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III
  • Patent number: 10800930
    Abstract: A conformal coating composition for protecting a metal surface from sulfur related corrosion includes a polymer and metal nanoparticles blended with the polymer. In accordance with some embodiments of the present invention, an apparatus includes an electronic component mounted on a substrate, metal conductors electronically connecting the electronic component, and a polymer conformal coating containing metal nanoparticles overlying the metal conductors. Accordingly, the metal nanoparticle-containing conformal coating is able to protect the metal conductors from corrosion caused by sulfur components (e.g., elemental sulfur, hydrogen sulfide, and/or sulfur oxides) in the air. That is, the metal nanoparticles in the conformal coating react with any corrosion inducing sulfur component in the air and prevent the sulfur component from reacting with the underlying metal conductors.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 13, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Joseph Kuczynski, Jason T. Wertz, Jing Zhang
  • Patent number: 10767013
    Abstract: Methods of forming nanoporous materials are described herein that include forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. The method generally includes forming a reaction mixture comprising a formaldehyde, a solvent, a primary aromatic diamine, and a diamine having a primary amino group and a secondary amino group, the secondary amino group having a base-reactive substituent, and heating the reaction mixture to a temperature of between about 50 deg C. and about 150 deg C. to form a polymer. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki