Patents by Inventor Dyson Wilkes

Dyson Wilkes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142572
    Abstract: Signal processing circuitry includes at least one processor configured to obtain a digitized radar signal, and further configured, for one or more iterations, to: determine a first power of at least one first signal sample of the radar signal; determine a second power of at least one second signal sample of the radar signal, the at least one second signal sample being subsequent in time to the at least one first signal sample; and determine a difference value between the second power and the first power. The at least one processor further configured to detecting a burst interference signal occurring within the radar signal based on the one or more difference values from the one or more iterations.
    Type: Application
    Filed: December 20, 2023
    Publication date: May 2, 2024
    Inventors: Dian Tresna Nugraha, Markus Bichl, Dyson Wilkes
  • Patent number: 11906654
    Abstract: Signal processing circuitry includes at least one processor configured to obtain a digitized radar signal, and further configured, for one or more iterations, to: determine a first power of at least one first signal sample of the radar signal; determine a second power of at least one second signal sample of the radar signal, the at least one second signal sample being subsequent in time to the at least one first signal sample; and determine a difference value between the second power and the first power. The at least one processor further configured to detecting a burst interference signal occurring within the radar signal based on the one or more difference values from the one or more iterations.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 20, 2024
    Assignee: Infineon Technologies AG
    Inventors: Dian Tresna Nugraha, Markus Bichl, Dyson Wilkes
  • Publication number: 20230138972
    Abstract: In some methods, sampled values based on a reception signal are stored in rows and columns of a memory array. A first 1-dimensional (1D) detector is moved in a first direction over the memory array. The first 1D detector includes a first cell under test and first and second training cells on opposite sides of the first cell under test. The first cell under test and the first and second training cells of the first 1D detector being aligned in the first direction. A second 1D detector is moved over the memory array. The second 1D detector includes a second cell under test and third and fourth training cells on opposite sides of the second cell under test. The second cell under test and the third and fourth training cells of the second 1D detector are aligned in a second direction that is perpendicular to the first direction.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 4, 2023
    Inventors: Ajayan Vijayakumaran Nair, David Michael Addison, Markus Bichl, Moustafa Samy Abdelkhalek Ahmed Emara, Andre Roger, Dyson Wilkes
  • Patent number: 11354181
    Abstract: A fault detector for detecting a fault in a digital processing circuit configured to transform an input data set to an output data set based on an energy conserving function. The fault detector includes an input sum of absolute squares circuit configured to determine an input sum of absolute squares value of the input data set, which has a predetermined length; an output sum of absolute squares circuit configured to determine an output sum of absolute squares value of the output data set; and an energy conservation check circuit configured to identify a fault in the digital processing circuit if a comparison based on the input sum of absolute squares value and the output sum of absolute squares value does not meet a predetermined energy conservation criteria.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: June 7, 2022
    Assignee: Infineon Technologies AG
    Inventors: Dyson Wilkes, Siva Karteek Bolisetti
  • Publication number: 20220018933
    Abstract: Signal processing circuitry includes at least one processor configured to obtain a digitized radar signal, and further configured, for one or more iterations, to: determine a first power of at least one first signal sample of the radar signal; determine a second power of at least one second signal sample of the radar signal, the at least one second signal sample being subsequent in time to the at least one first signal sample; and determine a difference value between the second power and the first power. The at least one processor further configured to detecting a burst interference signal occurring within the radar signal based on the one or more difference values from the one or more iterations.
    Type: Application
    Filed: July 13, 2021
    Publication date: January 20, 2022
    Inventors: Dian Tresna Nugraha, Markus Bichl, Dyson Wilkes
  • Publication number: 20210294688
    Abstract: A fault detector for detecting a fault in a digital processing circuit configured to transform an input data set to an output data set based on an energy conserving function. The fault detector includes an input sum of absolute squares circuit configured to determine an input sum of absolute squares value of the input data set, which has a predetermined length; an output sum of absolute squares circuit configured to determine an output sum of absolute squares value of the output data set; and an energy conservation check circuit configured to identify a fault in the digital processing circuit if a comparison based on the input sum of absolute squares value and the output sum of absolute squares value does not meet a predetermined energy conservation criteria.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Dyson Wilkes, Siva Karteek Bolisetti
  • Patent number: 7895416
    Abstract: A reconfigurable integrated circuit is provided wherein the available hardware resources can be optimised for a particular application. Dynamically reconfiguring (in both real-time and non real-time) the available resources and sharing a plurality of processing elements with a plurality of controller elements achieve this. In a preferred embodiment the integrated circuit includes a plurality of processing blocks, which interface to a reconfigurable interconnection means. A processing block has two forms, namely a shared resource block and a dedicated resource block. Each processing block consists of one or a plurality of controller elements and a plurality of processing elements. The controller element and processing element generally comprise diverse rigid coarse and fine grained circuits and are interconnected through dedicated and reconfigurable interconnect. The processing blocks can be configured as a hierarchy of blocks and or fractal architecture.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 22, 2011
    Assignee: Akya (Holdings) Limited
    Inventors: Graeme Roy Smith, Dyson Wilkes
  • Publication number: 20090259824
    Abstract: A reconfigurable integrated circuit is provided wherein the available hardware resources can be optimised for a particular application. Dynamically reconfiguring (in both real-time and non real-time) the available resources and sharing a plurality of processing elements with a plurality of controller elements achieve this. In a preferred embodiment the integrated circuit includes a plurality of processing blocks, which interface to a reconfigurable interconnection means. A processing block has two forms, namely a shared resource block and a dedicated resource block. Each processing block consists of one or a plurality of controller elements and a plurality of processing elements. The controller element and processing element generally comprise diverse rigid coarse and fine grained circuits and are interconnected through dedicated and reconfigurable interconnect. The processing blocks can be configured as a hierarchy of blocks and or fractal architecture.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 15, 2009
    Applicant: AKYA (HOLDINGS) LIMITED
    Inventors: Graeme Roy SMITH, Dyson WILKES
  • Patent number: 7571303
    Abstract: A reconfigurable integrated circuit is provided wherein the available hardware resources can be optimised for a particular application. Dynamically reconfiguring (in both real-time and non real-time) the available resources and sharing a plurality of processing elements with a plurality of controller elements achieve this. In a preferred embodiment the integrated circuit includes a plurality of processing blocks, which interface to a reconfigurable interconnection means. A processing block has two forms, namely a shared resource block and a dedicated resource block. Each processing block consists of one or a plurality of controller elements and a plurality of processing elements. The controller element and processing element generally comprise diverse rigid coarse and fine grained circuits and are interconnected through dedicated and reconfigurable interconnect. The processing blocks can be configured as a hierarchy of blocks and or fractal architecture.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 4, 2009
    Assignee: AKYA (Holdings) Limited
    Inventors: Graeme Roy Smith, Dyson Wilkes
  • Patent number: 7516372
    Abstract: A processor control system allows stored program code to be replaced. The original code can be stored entirely in a first memory, for example a ROM, with correction instructions stored in a second memory, for example a RAM, and the second memory is accessed only when a correction instruction exits. Received memory addresses are divided into a first plurality of most significant bits, and a second plurality of least significant bits. Only when the second plurality of least significant bits are all equal to zero, and there is a correction instruction stored in the RAM with an address which equals the most significant bits, the correction instruction is read and supplied to the processor. This, employs relatively little additional hardware, and the efficiency of the system is improved.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: April 7, 2009
    Assignee: Microsoft Corporation
    Inventor: Dyson Wilkes
  • Patent number: 7061272
    Abstract: A finite state machine (FSM) circuit including a random access memory (RAM) as the basic logical element and a multiplexer, which can be programmed to perform arbitrary sequences of events. The RAM is used as a state table and output states are fed back to determine the next memory location. The number of locations in the RAM is reduced in comparison with prior art devices, which minimises power consumed by a microprocessor implementing such an FSM. This reduction in the number of locations is possible because only relevant inputs to the RAM are selected. The circuit has both synchronous and asynchronous implementations.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: June 13, 2006
    Assignee: Infineon Technologies AG
    Inventors: Dyson Wilkes, Kostas Spyridis
  • Publication number: 20050240823
    Abstract: A processor control system allows stored program code to be replaced. The original code can be stored entirely in a first memory, for example a ROM, with correction instructions stored in a second memory, for example a RAM, and the second memory is accessed only when a correction instruction exits. Received memory addresses are divided into a first plurality of most significant bits, and a second plurality of least significant bits. Only when the second plurality of least significant bits are all equal to zero, and there is a correction instruction stored in the RAM with an address which equals the most significant bits, the correction instruction is read and supplied to the processor. This, employs relatively little additional hardware, and the efficiency of the system is improved.
    Type: Application
    Filed: January 27, 2003
    Publication date: October 27, 2005
    Inventor: Dyson Wilkes
  • Publication number: 20050140390
    Abstract: A finite state machine (FSM) circuit including a random access memory (RAM) as the basic logical element and a multiplexer, which can be programmed to perform arbitrary sequences of events. The RAM is used as a state table and output states are fed back to determine the next memory location. The number of locations in the RAM is reduced in comparison with prior art devices, which minimises power consumed by a microprocessor implementing such an FSM. This reduction in the number of locations is possible because only relevant inputs to the RAM are selected. The circuit has both synchronous and asynchronous implementations.
    Type: Application
    Filed: June 30, 2004
    Publication date: June 30, 2005
    Inventors: Dyson Wilkes, Kostas Spyridis