Patents by Inventor Earl W. McCune

Earl W. McCune has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130022150
    Abstract: A communications transmitter includes a combination modulator and a baseband processor configured to generate amplitude, angle, in-phase and quadrature signals. The combination modulator is configured to modulate in the quadrature domain or the polar domain, depending on an output power level of the transmitter and/or the type of modulation scheme being used. When configured to modulate in the quadrature domain, the baseband processor is configured to generate time-varying in-phase and quadrature modulating signals and time-invariant amplitude and angle signals for the combination modulator. When configured to modulate in the polar domain, the baseband processor is configured to generate time-varying amplitude and angle modulating signals and time-invariant in-phase and quadrature signals for the combination modulator. In another embodiment of the invention, the communications transmitter is configurable to operate in three different operational modes: linear, envelope tracking and switch modes.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Inventor: Earl W. McCune, JR.
  • Publication number: 20130022151
    Abstract: A communications transmitter includes a combination modulator and a baseband processor configured to generate amplitude, angle, in-phase and quadrature signals. The combination modulator is configured to modulate in the quadrature domain or the polar domain, depending on an output power level of the transmitter and/or the type of modulation scheme being used. When configured to modulate in the quadrature domain, the baseband processor is configured to generate time-varying in-phase and quadrature modulating signals and time-invariant amplitude and angle signals for the combination modulator. When configured to modulate in the polar domain, the baseband processor is configured to generate time-varying amplitude and angle modulating signals and time-invariant in-phase and quadrature signals for the combination modulator. In another embodiment of the invention, the communications transmitter is configurable to operate in three different operational modes: linear, envelope tracking and switch modes.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Inventor: Earl W. McCune, JR.
  • Publication number: 20130022149
    Abstract: A communications transmitter includes a combination modulator and a baseband processor configured to generate amplitude, angle, in-phase and quadrature signals. The combination modulator is configured to modulate in the quadrature domain or the polar domain, depending on an output power level of the transmitter and/or the type of modulation scheme being used. When configured to modulate in the quadrature domain, the baseband processor is configured to generate time-varying in-phase and quadrature modulating signals and time-invariant amplitude and angle signals for the combination modulator. When configured to modulate in the polar domain, the baseband processor is configured to generate time-varying amplitude and angle modulating signals and time-invariant in-phase and quadrature signals for the combination modulator. In another embodiment of the invention, the communications transmitter is configurable to operate in three different operational modes: linear, envelope tracking and switch modes.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Inventor: Earl W. McCune, JR.
  • Patent number: 8331882
    Abstract: A relationship is established between measurable characteristics of the DC power input to a power amplifier and the RF output power level. A power circuit is configured to measure the input supply current to the power amplifier and to utilize the relationship between the input supply current and the applied input supply voltage to the output power level, thereby normalizing the output power of an amplified communication signal.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Earl W. McCune, Richard W. D. Booth
  • Patent number: 8301088
    Abstract: Methods and apparatus for controlling power in a polar modulation transmitter. An exemplary polar modulation transmitter includes a radio frequency power amplifier (RF PA), a phase path having circuitry operable to generate a constant amplitude phase modulated signal, and an amplitude path including an envelope modulator circuit having first and second envelope modulation paths. The RF phase modulated signal is applied to an RF input of the RF PA, while an envelope modulated power supply signal generated by a selected one of the first and second envelope modulation paths is coupled to a power supply input of the RF PA. The second envelope modulation path is selected during times when the power required by the RF PA is below some predetermined power level. During times when the RF PA requires power above the predetermined power level, the first envelope modulation path is selected.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Marnie Dunsmore, Earl W. McCune, Jr., Gary Do
  • Publication number: 20120126909
    Abstract: Methods and apparatus for translating duty cycle information in duty-cycle-modulated signals to higher frequencies or higher data rates. An exemplary duty cycle translator includes a duty cycle evaluator, a high-speed digital counter, and a comparator. The duty cycle evaluator generates a first digital number representing a duty cycle of a low-frequency input duty-cycle-modulated (DCM) signal. The comparator compares the first digital number to a second digital number generated by the high-speed digital counter, and generates, based on the comparison, an output DCM signal having a higher frequency or data rate than the frequency or data rate of the low-frequency input DCM signal but a duty cycle that is substantially the same as the duty cycle of the low-frequency input DCM signal.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 24, 2012
    Inventor: Earl W. McCune, JR.
  • Publication number: 20120081025
    Abstract: A solid-state lighting system comprises a plurality of light-emitting devices (e.g., light-emitting diodes) and an alternating current to direct current (AC-DC) converter that converts AC power to DC power for powering the plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly, without the need for or use of a bridge rectifier or step-down transformer. According to one aspect of the invention, the light-emitting devices of the solid-state lighting system are autonomous and individually powered by a plurality of DC power supplies generated from the DC power produced by the AC-DC converter. According to another aspect, a plurality of phase-offset dimmer control signals are generated based on waveform distortions in a dimming signal produced by a conventional dimmer switch. The phase-offset dimmer control signals are used to individually control the dimming of the light-emitting devices.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Inventor: Earl W. McCune, JR.
  • Publication number: 20120081035
    Abstract: A solid-state lighting system comprises a plurality of light-emitting devices (e.g., light-emitting diodes) and an alternating current to direct current (AC-DC) converter that converts AC power to DC power for powering the plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly, without the need for or use of a bridge rectifier or step-down transformer. According to one aspect of the invention, the light-emitting devices of the solid-state lighting system are autonomous and individually powered by a plurality of DC power supplies generated from the DC power produced by the AC-DC converter. According to another aspect, a plurality of phase-offset dimmer control signals are generated based on waveform distortions in a dimming signal produced by a conventional dimmer switch. The phase-offset dimmer control signals are used to individually control the dimming of the light-emitting devices.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Inventor: Earl W. McCune, JR.
  • Publication number: 20120081023
    Abstract: A solid-state lighting system comprises a plurality of light-emitting devices (e.g., light-emitting diodes) and an alternating current to direct current (AC-DC) converter that converts AC power to DC power for powering the plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly, without the need for or use of a bridge rectifier or step-down transformer. According to one aspect of the invention, the light-emitting devices of the solid-state lighting system are autonomous and individually powered by a plurality of DC power supplies generated from the DC power produced by the AC-DC converter. According to another aspect, a plurality of phase-offset dimmer control signals are generated based on waveform distortions in a dimming signal produced by a conventional dimmer switch. The phase-offset dimmer control signals are used to individually control the dimming of the light-emitting devices.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Inventor: Earl W. McCune, JR.
  • Patent number: 8145147
    Abstract: A modulator includes a power driver, a power amplifier, and a heterojunction bipolar transistor (HBT) type device. The power driver is for receiving an amplitude modulation signal and for providing a control signal. The power amplifier is for receiving a phase modulation signal, a bias voltage, and the control signal. The power amplifier is for providing a radio frequency signal as an output based on the phase modulation signal, the bias voltage, and the control signal. The switching device is for coupling the power driver to the power amplifier such that the control signal is provided to the power amplifier in a timely manner.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Wendell B. Sander, Earl W. McCune, Jr.
  • Patent number: 8126409
    Abstract: A polar transmitter includes a power amplifier (PA), an amplitude modulation (AM) path including an AM path adjustable delay, an AM path delay measurement circuit, a phase modulation (PM) path including a PM path adjustable delay, and a PM path delay measurement circuit. The AM path delay measurement circuit is configured to measure an AM path delay using waveform correlation, e.g., using peak magnitude events (PMEs) in signals transmitted along the AM path to a power supply port of the PA. The PM path delay measurement circuit is configured to measure a PM path delay using waveform correlation, e.g., using PMEs in signals transmitted along the PM path to a phase-modulated input of the PA. The measured AM and PM path delays are used to adjust the AM and PM path adjustable delays, to reduce the delay mismatch between signals appearing at the power supply and phase-modulated input ports of the polar transmitter's PA.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: February 28, 2012
    Assignee: Panasonic Corporation
    Inventors: Saleh Osman, Earl W. McCune, Jr.
  • Publication number: 20120020135
    Abstract: An AC/DC converter that converts an AC input voltage Vin to a DC output voltage comprises an inductor, a capacitor selectively coupled to the inductor, a plurality of switches, and a controller. The controller configures the plurality of switches, inductor, and capacitor to operate as a buck converter during times when Vin>Vout and to operate as an inverting buck converter during times when Vin<?Vout. The controller modulates the duty cycles of the plurality of switches to regulate the DC output voltage Vout to the desired, constant output level.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 26, 2012
    Inventor: Earl W. McCune
  • Patent number: 7983643
    Abstract: A frequency demodulator comprises a frequency discriminator configured to generate a frequency modulation signal from frequency modulated signal, circuitry for generating a phase modulation signal from the frequency modulation signal, and a click reduction signal processing (CRSP) circuit operable to remove noise enhancements from the phase modulation signal caused by clicks. By first converting the frequency modulation signal to a phase modulation signal, noise enhancements caused by clicks are more readily distinguished from other noise in the phase modulation signal. After the noise enhancements have been removed by the CRSP, the frequency modulation is recovered substantially free of clicks. Removal of the clicks results in an improved output signal-to-noise ratio, thereby advantageously extending the onset of the threshold effect.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Panasonic Corporation
    Inventors: Earl W. McCune, Jr., Richard W. D. Booth
  • Patent number: 7929644
    Abstract: Methods and systems for recovering clock and data in data streams communicated over serial communications links. An exemplary serial communications receiver system includes a line receiver configured to receive a data stream from a serial communications link and an instant-acquisition clock and data recovery circuit coupled to the line receiver. The instant-acquisition clock and data recovery circuit includes a time interval detector and a sampling clock selector. The time interval detector is operable to sample the data stream received by the line receiver according to a multi-phase set of sampling clocks. The sampling clock selector is operable to designate one of the sampling clocks of the multi-phase set of sampling clocks as a recovered clock, based on a data transition in the received data stream detected by the time interval detector.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: April 19, 2011
    Assignee: Panasonic Corporation
    Inventor: Earl W. McCune, Jr.
  • Publication number: 20110084703
    Abstract: An electronic measuring system for extending the effective measurement input frequency range of an electronic measuring instrument includes an electronic measuring instrument and a frequency downconverting subsystem, separate from the electronic measuring instrument, having one or more cascaded (i.e., series-connected) downconverting frequency extending units (FEU-Ds). Each FEU-D of the frequency downconverting subsystem includes a downconverting circuit (e.g., a block downconverter) enclosed within a housing. The frequency downconverting subsystem operates to downconvert a test signal from a device under test (DUT) to a downconverted test signal having a frequency within the permissible input frequency range of the measuring instrument, thereby extending the effective measurement input frequency range of the electronic measuring instrument.
    Type: Application
    Filed: October 10, 2009
    Publication date: April 14, 2011
    Inventor: Earl W. McCune, Jr.
  • Patent number: 7859459
    Abstract: A phased array receiver includes a plurality of receive paths having a plurality of downconverters, a plurality of digitally controlled local oscillators associated with the plurality of receive paths, and a combiner. In response to a plurality of digital phase control signals, the plurality of digitally controlled local oscillators controls phases of a plurality of local oscillator signals generated by the plurality of digitally controlled local oscillators. The phases of the plurality of local oscillator signals are introduced as phase shifts in a plurality of intermediate frequency signals produced by the plurality of downconverters. The plurality of digitally controlled local oscillators is configured to respond to changes in digital values of the plurality of digital phase control signals to achieve a desired phase relationship among the phases of the intermediate frequency signals.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: December 28, 2010
    Assignee: Panasonic Corporation
    Inventor: Earl W. McCune, Jr.
  • Patent number: 7755443
    Abstract: An apparatus for providing an angle modulated signal includes a tunable oscillator circuit, a variable time delay circuit, and an optional scaling and delay control apparatus. The tunable oscillator circuit generates an oscillatory signal having a predetermined frequency. The variable time delay circuit operates to delay the oscillatory signal in accordance with time varying changes in an angle control signal, thereby producing the desired angle modulated signal. The scaling and delay control apparatus is configured to scale the angle control signal to account for frequency dependent phase delays of the oscillatory signal through the variable time delay circuit.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: July 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Saleh Osman, Earl W. McCune, Jr.
  • Publication number: 20100124889
    Abstract: A polar transmitter includes a power amplifier (PA), an amplitude modulation (AM) path including an AM path adjustable delay, an AM path delay measurement circuit, a phase modulation (PM) path including a PM path adjustable delay, and a PM path delay measurement circuit. The AM path delay measurement circuit is configured to measure an AM path delay using waveform correlation, e.g., using peak magnitude events (PMEs) in signals transmitted along the AM path to a power supply port of the PA. The PM path delay measurement circuit is configured to measure a PM path delay using waveform correlation, e.g., using PMEs in signals transmitted along the PM path to a phase-modulated input of the PA. The measured AM and PM path delays are used to adjust the AM and PM path adjustable delays, to reduce the delay mismatch between signals appearing at the power supply and phase-modulated input ports of the polar transmitter's PA.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Inventors: Saleh Osman, Earl W. McCune, JR.
  • Patent number: 7702300
    Abstract: In an embodiment of the invention, a system provides for efficient polar and linear signal modulation. The system has a controller coupled to a voltage converter and a modulator. The system also has an amplifier coupled to the voltage converter and the phase modulator. The controller is for receiving an input and providing a polar signal. The voltage converter is for receiving the polar signal, receiving a voltage input, and providing a power signal. The amplifier is for amplifying the modulated signal based on the power signal. The voltage converter provides a feedback signal to the controller, and the controller adjusts a scale of modulation, such as a peak of the modulation signal, based on the feedback signal, such that the output power and the amplification by the amplifier are based on the feedback signal.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: April 20, 2010
    Assignee: Panasonic Corporation
    Inventor: Earl W. McCune
  • Publication number: 20100009641
    Abstract: An exemplary modulator apparatus for a polar modulation transmitter includes a phase difference extractor, a phase modulator, and a coarse phase controller. The phase difference extractor is configured to extract +180° and ?180° phase differences represented in a phase-difference modulation signal in a phase modulation path of the polar modulation transmitter, or extract other phase differences exceeding other predetermined phase difference thresholds, to produce a bandwidth-reduced phase-difference modulation signal. The phase modulator includes a controlled oscillator having a tuning port that is modulated by phase differences represented in the bandwidth-reduced phase-difference modulation signal, to produce a phase-modulated RF carrier signal. The coarse phase controller operates to effectuate phase reversals or introduce other coarse phase changes into the phase-modulated RF carrier signal, based on the phase differences extracted from the original phase-difference modulation signal.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Inventors: Saleh Osman, Wayne S. Lee, Earl W. McCune, JR.