Patents by Inventor Eckhard Graf

Eckhard Graf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11261082
    Abstract: A micromechanical device that includes a silicon substrate with an overlying oxide layer and with a micromechanical functional layer lying above same, which extend in parallel to a main extension plane, a cavity being formed at least in the micromechanical functional layer and in the oxide layer. An access channel is formed in the oxide layer and/or in the micromechanical functional layer which, starting from the cavity, extends in parallel to the main extension plane and in the process extends in a projection direction, as viewed perpendicularly to the main extension plane, all the way into an access area outside the cavity. A method for manufacturing a micromechanical device is also described.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Eckhard Graf, Holger Rumpf, Jens Frey, Jochen Reinmuth, Kurt-Ulrich Ritzau, Achim Breitling
  • Patent number: 10752498
    Abstract: A method for manufacturing a micromechanical component including a substrate and a cap which is joined to the substrate, and, together with the substrate, encloses a first cavity, a first pressure prevailing and a first gas mixture having a first chemical composition being enclosed in the first cavity. In a first step, an access opening connecting the first cavity to surroundings of the micromechanical component being formed in the substrate or in the cap. In a second step, the first pressure and/or the first chemical composition in the first cavity being set. In a third step, the access opening being sealed by introducing energy or heat into an absorbing portion of the substrate or the cap with the aid of a laser, a reversible getter for further setting the first pressure and/or the first chemical composition being introduced into the first cavity chronologically prior to the third step.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 25, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Achim Breitling, Eckhard Graf, Jens Frey, Jochen Reinmuth, Mawuli Ametowobla
  • Publication number: 20200198966
    Abstract: A micromechanical device that includes a silicon substrate with an overlying oxide layer and with a micromechanical functional layer lying above same, which extend in parallel to a main extension plane, a cavity being formed at least in the micromechanical functional layer and in the oxide layer. An access channel is formed in the oxide layer and/or in the micromechanical functional layer which, starting from the cavity, extends in parallel to the main extension plane and in the process extends in a projection direction, as viewed perpendicularly to the main extension plane, all the way into an access area outside the cavity. A method for manufacturing a micromechanical device is also described.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 25, 2020
    Inventors: Eckhard Graf, Holger Rumpf, Jens Frey, Jochen Reinmuth, Kurt-Ulrich Ritzau, Achim Breitling
  • Publication number: 20180346324
    Abstract: A method for manufacturing a micromechanical component including a substrate and a cap which is joined to the substrate, and, together with the substrate, encloses a first cavity, a first pressure prevailing and a first gas mixture having a first chemical composition being enclosed in the first cavity. In a first step, an access opening connecting the first cavity to surroundings of the micromechanical component being formed in the substrate or in the cap. In a second step, the first pressure and/or the first chemical composition in the first cavity being set. In a third step, the access opening being sealed by introducing energy or heat into an absorbing portion of the substrate or the cap with the aid of a laser, a reversible getter for further setting the first pressure and/or the first chemical composition being introduced into the first cavity chronologically prior to the third step.
    Type: Application
    Filed: October 12, 2016
    Publication date: December 6, 2018
    Inventors: Achim Breitling, Eckhard Graf, Jens Frey, Jochen Reinmuth, Mawuli Ametowobla
  • Publication number: 20150137329
    Abstract: An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventors: Julian Gonska, Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8975118
    Abstract: An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 10, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Julian Gonska, Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8748998
    Abstract: A sensor module includes a substrate system which has multiple substrates situated one on top of the other and connected in each case via a wafer bond connection. The substrate system includes at least one first sensor substrate and at least one second sensor substrate, the first sensor substrate having a first sensor structure and the second sensor substrate having a second sensor structure. The first and second sensor structures are designed for detecting different characteristics. At least the first sensor structure includes a micromechanical functional structure. Moreover, a method for manufacturing such a sensor module is disclosed.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: June 10, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jens Frey, Heribert Weber, Eckhard Graf
  • Patent number: 8647961
    Abstract: A method is described for filling cavities in wafers, the cavities being open to a predetermined surface of the wafer, including the following steps: applying a lacquer-like filling material to the predetermined surface of the wafer; heating the wafer at a first temperature; driving out gas bubbles enclosed in the filling material by heating the wafer under vacuum at a second temperature which is equal to or higher than the first temperature; and curing the filling material by heating the wafer at a third temperature which is higher than the second temperature. Furthermore, also described is a blind hole filled using such a method and general 3D cavities as well as a wafer having insulation trenches of a silicon via filled using such a method.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8587095
    Abstract: A method for establishing and closing at least one trench of a semiconductor component, in particular a micromechanical or electrical semiconductor component, having the following steps: applying at least one metal layer over the trench to be formed; forming a lattice having lattice openings in the at least one metal layer over the trench to be formed; forming the trench below the metal lattice, and closing the lattice openings over the trench.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: November 19, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Reinmuth, Eckhard Graf
  • Patent number: 8564078
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 22, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20130147020
    Abstract: An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
    Type: Application
    Filed: April 13, 2011
    Publication date: June 13, 2013
    Inventors: Julian Gonska, Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8419957
    Abstract: A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Patent number: 8174082
    Abstract: A micromechanical component having at least two caverns is provided, the caverns being delimited by the micromechanical component and a cap, and the caverns having different internal atmospheric pressures. The micromechanical component and cap are hermetically joined to one another at a first specifiable atmospheric pressure, then an access to at least one cavern is produced, and subsequently the access is hermetically closed off at a second specifiable atmospheric pressure.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: May 8, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Frank Fischer, Eckhard Graf, Heiko Stahl, Hartmut Kueppers, Roland Scheuerer
  • Patent number: 8138006
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: March 20, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20120049301
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20120038030
    Abstract: A method is described for filling cavities in wafers, the cavities being open to a predetermined surface of the wafer, including the following steps: applying a lacquer-like filling material to the predetermined surface of the wafer; heating the wafer at a first temperature; driving out gas bubbles enclosed in the filling material by heating the wafer under vacuum at a second temperature which is equal to or higher than the first temperature; and curing the filling material by heating the wafer at a third temperature which is higher than the second temperature. Furthermore, also described is a blind hole filled using such a method and general 3D cavities as well as a wafer having insulation trenches of a silicon via filled using such a method.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 16, 2012
    Inventors: Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Publication number: 20120032283
    Abstract: A sensor module includes a substrate system which has multiple substrates situated one on top of the other and connected in each case via a wafer bond connection. The substrate system includes at least one first sensor substrate and at least one second sensor substrate, the first sensor substrate having a first sensor structure and the second sensor substrate having a second sensor structure. The first and second sensor structures are designed for detecting different characteristics. At least the first sensor structure includes a micromechanical functional structure. Moreover, a method for manufacturing such a sensor module is disclosed.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 9, 2012
    Inventors: Jens FREY, Heribert WEBER, Eckhard GRAF
  • Publication number: 20110169143
    Abstract: A method for establishing and closing at least one trench of a semiconductor component, in particular a micromechanical or electrical semiconductor component, having the following steps: applying at least one metal layer over the trench to be formed; forming a lattice having lattice openings in the at least one metal layer over the trench to be formed; forming the trench below the metal lattice, and closing the lattice openings over the trench.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jochen Reinmuth, Eckhard Graf
  • Publication number: 20100133630
    Abstract: A method for manufacturing a micromechanical component is proposed. In this context, at least one trench structure having a depth less than the substrate thickness is to be produced in a substrate. In addition, an insulating layer and a filler layer are produced or applied on a first side of the substrate. The filler layer comprises a filler material that substantially fills up the trench structure. A planar first side of the substrate is produced by way of a subsequent planarization within a plane of the filler layer or of the insulating layer or of the substrate. A further planarization of the second side of the substrate is then accomplished. A micromechanical component that is manufactured in accordance with the method is also described.
    Type: Application
    Filed: April 8, 2008
    Publication date: June 3, 2010
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20100089868
    Abstract: A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
    Type: Application
    Filed: April 8, 2008
    Publication date: April 15, 2010
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf