Patents by Inventor Eddula Sudhakar Reddy

Eddula Sudhakar Reddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8354899
    Abstract: Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10?12 s?1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventors: Christopher Fred Keimel, Marco Francesco Aimi, Shubhra Bansal, Reed Roeder Corderman, Kuna Venkat Satya Rama Kishore, Eddula Sudhakar Reddy, Atanu Saha, Kanakasabapathi Subramanian, Parag Thakre, Alex David Corwin
  • Publication number: 20110067983
    Abstract: Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10?12 s?1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Fred Keimel, Marco Francesco Aimi, Shubhra Bansal, Reed Roeder Corderman, Kuna Venkat Satya Rama Kishore, Eddula Sudhakar Reddy, Atanu Saha, Kanakasabapathi Subramanian, Parag Thakre, Alex David Corwin