Patents by Inventor Edmund Lam

Edmund Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9456193
    Abstract: The present invention provides a method and an apparatus for processing a light-field image. The method includes: acquiring a light-field image; acquiring an occlusion tag function of each unit image in the light-field image; determining a cost function for offset estimation of each unit image according to intensity change information and gradient change information that are of each unit image in the light-field image and the occlusion tag function of each unit image; acquiring an offset of each unit image in the light-field image by using the cost function; and reconstructing a high-resolution light field by using the offset of each unit image. An offset of each unit image in a light-field image may first be acquired according to optical flow change information of the light-field image, and then a high-resolution light field is reconstructed by using the offset of each unit image, so as to effectively improve spatial resolution.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: September 27, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jing Xu, Zhimin Xu, Edmund Lam
  • Publication number: 20150172629
    Abstract: The present invention provides a method and an apparatus for processing a light-field image. The method includes: acquiring a light-field image; acquiring an occlusion tag function of each unit image in the light-field image; determining a cost function for offset estimation of each unit image according to intensity change information and gradient change information that are of each unit image in the light-field image and the occlusion tag function of each unit image; acquiring an offset of each unit image in the light-field image by using the cost function; and reconstructing a high-resolution light field by using the offset of each unit image. An offset of each unit image in a light-field image may first be acquired according to optical flow change information of the light-field image, and then a high-resolution light field is reconstructed by using the offset of each unit image, so as to effectively improve spatial resolution.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Jing XU, Zhimin XU, Edmund LAM
  • Patent number: 7676114
    Abstract: A system for three-dimensional reconstruction of a surface profile of a surface of an object is provided that utilizes a binary pattern projected onto the surface of the object. A binary string consisting of a series of “1”s and “0”s is first created, and a binary pattern of light that is constructed in accordance with the binary string such that bright and dark bands of light of equal widths correspond to “1”s and “0”s from the binary string respectively is projected onto the surface. The binary pattern is shifted with respect to the surface multiple times, during which an image of the binary pattern illuminating the surface is obtained at each position of the binary pattern. Thereafter, a height of each predetermined point on the surface is calculated relative to a reference plane based upon the images cumulatively obtained at said predetermined point.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 9, 2010
    Assignee: ASM Assembly Automation Ltd.
    Inventors: Chi Kit Ronald Chung, Jun Cheng, Y. Edmund Lam, Shun Ming Kenneth Fung, Fan Wang, Wing Hong Leung
  • Publication number: 20050196685
    Abstract: An optical lithography method is disclosed that uses double exposure of a reusable template mask and a trim mask to fabricate regularly-placed rectangular contacts in standard cells of application-specific integrated circuits (ASICs). A first exposure of the reusable template mask with periodic patterns forms periodic dark lines on a wafer and a second exposure of an application-specific trim mask remove the unwanted part of the dark lines and the small cuts of the dark lines left form the rectangular regularly-placed contacts. All contacts are placed regularly in one direction while unrestrictedly in the perpendicular direction. The regular placement of patterns on the template mask enable more effective use of resolution enhancement technologies, which in turn allows a decrease in manufacturing cost and the minimum contact size and pitch.
    Type: Application
    Filed: February 24, 2005
    Publication date: September 8, 2005
    Inventors: Jun Wang, Alfred Wong, Edmund Lam