Patents by Inventor Edson Ng

Edson Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953104
    Abstract: Disclosed herein are embodiments of a valve assembly for providing selective flow communication between a plurality of fluid flow conduits. The valve assembly may comprise two valve members disposed coaxially in fluidly sealing contact and relatively rotatable to provide valving action of at least two port tracks. At least one valve member may comprise a fluid pressure loading means, and the fluid pressure loading means may span at least two port tracks. The valve assembly may further comprise a drive means for driving relative rotation of the valve members in order to enable cycled interconnection and fluid flow through the fluid flow conduits.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Pathway Industries, Inc.
    Inventors: Matthew L. Babicki, Edson Ng
  • Publication number: 20230010933
    Abstract: Disclosed herein is a method for making hydrogen with carbon sequestration. The method may comprise using a biomass hydroconverter product to fuel a steam reformer that converts a hydrocarbon fuel stream into a gas mixture that contains at least hydrogen and carbon dioxide. The gas stream is separated to form a hydrogen-enriched gas stream and at least one hydrogen-depleted stream. The hydrogen-depleted stream may be stored or further processed to sequester the carbon contained therein. Additionally, or alternatively, the solid residue from the biomass hydroconverter also may be stored for further sequester carbon generated by the method.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 12, 2023
    Applicant: G4 Insights Inc.
    Inventors: Matthew Babicki, Edson Ng
  • Publication number: 20220243829
    Abstract: Disclosed herein are embodiments of a valve assembly for providing selective flow communication between a plurality of fluid flow conduits. The valve assembly may comprise two valve members disposed coaxially in fluidly sealing contact and relatively rotatable to provide valving action of at least two port tracks. At least one valve member may comprise a fluid pressure loading means, and the fluid pressure loading means may span at least two port tracks. The valve assembly may further comprise a drive means for driving relative rotation of the valve members in order to enable cycled interconnection and fluid flow through the fluid flow conduits.
    Type: Application
    Filed: January 27, 2022
    Publication date: August 4, 2022
    Inventors: Matthew L. Babicki, Edson Ng
  • Patent number: 10653995
    Abstract: Disclosed embodiments provide a system and method for producing hydrocarbons from biomass. Certain embodiments of the method are particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments of the method convert a biomass feedstock into a product hydrocarbon by hydropyrolysis. Catalytic conversion of the resulting pyrolysis gas to the product hydrocarbon and carbon dioxide occurs in the presence of hydrogen and steam over a CO2 sorbent with simultaneous generation of the required hydrogen by reaction with steam. A gas separator purifies product methane, while forcing recycle of internally generated hydrogen to obtain high conversion of the biomass feedstock to the desired hydrocarbon product. While methane is a preferred hydrocarbon product, liquid hydrocarbon products also can be delivered.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: May 19, 2020
    Assignee: G4 Insights Inc.
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Patent number: 10190066
    Abstract: The present invention provides a system and method for producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments convert a biomass feedstock into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is disclosed for cycling the catalyst between steam reforming, methanation and regeneration zones.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: January 29, 2019
    Assignee: G4 Insights Inc.
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Publication number: 20180214815
    Abstract: Disclosed embodiments provide a system and method for producing hydrocarbons from biomass. Certain embodiments of the method are particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments of the method convert a biomass feedstock into a product hydrocarbon by hydropyrolysis. Catalytic conversion of the resulting pyrolysis gas to the product hydrocarbon and carbon dioxide occurs in the presence of hydrogen and steam over a CO2 sorbent with simultaneous generation of the required hydrogen by reaction with steam. A gas separator purifies product methane, while forcing recycle of internally generated hydrogen to obtain high conversion of the biomass feedstock to the desired hydrocarbon product. While methane is a preferred hydrocarbon product, liquid hydrocarbon products also can be delivered.
    Type: Application
    Filed: September 14, 2017
    Publication date: August 2, 2018
    Applicant: G4 Insights Inc.
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Publication number: 20160304799
    Abstract: The present invention provides a system and method for producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments convert a biomass feedstock into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is disclosed for cycling the catalyst between steam reforming, methanation and regeneration zones.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Applicant: G4 Insights Inc.
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Patent number: 9394171
    Abstract: Certain aspects of the system and method concern producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. A biomass feedstock may be converted into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is described for cycling the catalyst between steam reforming, methanation and regeneration zones.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 19, 2016
    Assignee: G4 Insights Inc.
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Patent number: 8674153
    Abstract: A method for converting lignocellulosic biomass to a useful fuel is disclosed in a process sequence resulting in low levels of depositable tars in an output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones extends beyond the time required for methane formation. This sequence results in low tar deposit levels. The catalyst promotes preferential formation of methane and non-deposit forming hydrocarbons, and coke re-gasification.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 18, 2014
    Assignee: G4 Insights Inc.
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Patent number: 8541637
    Abstract: A system and method for converting biomass into fluid hydrocarbon products to minimize the use of fossil fuels, provide energy and chemical feedstock security, and sustainable and/or carbon neutral electric power, are disclosed. For example, fast pyrolysis can be performed on biomass to produce pygas and char using a maximum processing temperature of about 650° C. The pygas is provided to an independent reactor without the addition of an oxidizing agent for catalytically converting the pygas to hydrocarbons using a maximum processing temperature of about 650° C. A system comprising fast pyrolysis means producing a pygas and char, independent catalytic conversion means downstream of the fast pyrolysis for converting the pygas to hydrocarbons, and a hydrogen source, external to the system and/or produced by a steam reformer by steam reformation of at least a portion of the hydrocarbons, coupled to catalytic conversion means, also are described.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 24, 2013
    Assignee: G4 Insights Inc.
    Inventors: Matthew L. Babicki, Brian G. Sellars, Bowie G. Keefer, Edson Ng
  • Patent number: 8383871
    Abstract: Embodiments of a thermochemical method to convert lignocellulosic biomass to a useful fuel are disclosed in a process sequence resulting in low levels of depositable tars in the output gas stream. One disclosed embodiment comprises performing a sequence of steps at elevated pressure and elevated hydrogen partial pressure, including fast (or flash) hydropyrolysis of a lignocellulosic biomass feed followed sequentially with catalytically enhanced reactions for the formation of methane operating at moderate temperatures of from about 400° C. to about 650° C. and under moderately elevated pressure (about 5 atm to about 50 atm). A temperature rise in the catalyst above pyrolysis temperature is achieved without the addition of air or oxygen. Gas residence time at elevated temperature downstream of methane formation zones is extended well beyond the time required for methane formation. This sequence results in low depositable tars in the output gas stream.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 26, 2013
    Inventors: Brian G. Sellars, Matthew L. Babicki, Bowie G. Keefer, Edson Ng
  • Publication number: 20130023707
    Abstract: The present invention provides a system and method for producing hydrocarbons from biomass. The method is particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments convert a biomass feedstock into a product hydrocarbon by fast pyrolysis. The resulting pyrolysis gas is converted to the product hydrocarbon and carbon dioxide in the presence of hydrogen and steam while simultaneously generating the required hydrogen by reaction with steam under prescribed conditions for self-sufficiency of hydrogen. Methane is a preferred hydrocarbon product. A system also is disclosed for cycling the catalyst between steam reforming, methanation and regeneration zones.
    Type: Application
    Filed: May 17, 2012
    Publication date: January 24, 2013
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Publication number: 20130017460
    Abstract: Disclosed embodiments provide a system and method for producing hydrocarbons from biomass. Certain embodiments of the method are particularly useful for producing substitute natural gas from forestry residues. Certain disclosed embodiments of the method convert a biomass feedstock into a product hydrocarbon by hydropyrolysis. Catalytic conversion of the resulting pyrolysis gas to the product hydrocarbon and carbon dioxide occurs in the presence of hydrogen and steam over a CO2 sorbent with simultaneous generation of the required hydrogen by reaction with steam. A gas separator purifies product methane, while forcing recycle of internally generated hydrogen to obtain high conversion of the biomass feedstock to the desired hydrocarbon product. While methane is a preferred hydrocarbon product, liquid hydrocarbon products also can be delivered.
    Type: Application
    Filed: May 17, 2012
    Publication date: January 17, 2013
    Inventors: Bowie G. Keefer, Matthew L. Babicki, Brian G. Sellars, Edson Ng
  • Publication number: 20100228062
    Abstract: The present invention provides a system and method for converting biomass into fluid hydrocarbon products to minimize the use of fossil fuels, provide energy and chemical feedstock security, and sustainable and/or carbon neutral electric power. One disclosed embodiment comprises performing fast pyrolysis on biomass to produce pygas and char using a maximum processing temperature of about 650° C. The pygas is provided to an independent reactor without the addition of an oxidizing agent for catalytically converting the pygas to hydrocarbons using a maximum processing temperature of about 650° C. The present invention also concerns a system comprising fast pyrolysis means producing a pygas and char, independent catalytic conversion means downstream of the fast pyrolysis for converting the pygas to hydrocarbons, and a hydrogen source, external to the system and/or produced by a steam reformer by steam reformation of at least a portion of the hydrocarbons, coupled to catalytic conversion means.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Inventors: Matthew L. Babicki, Brian G. Sellars, Bowie G. Keefer, Edson Ng