Patents by Inventor Eduardo Altschuler

Eduardo Altschuler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9340847
    Abstract: Embodiments of the present disclosure are directed to methods of manufacturing steel tubes that can be used for mining exploration, and rods made by the same. Embodiments of the methods include a quenching of steel tubes from an austenitic temperature prior to a cold drawing, thereby increasing mechanical properties within the steel tube, such as yield strength, impact toughness, hardness, and abrasion resistance. Embodiments of the methods reduce the manufacturing step of quenching and tempering ends of a steel tube to compensate for wall thinning during threading operations. Embodiments of the methods also tighten dimensional tolerances and reduce residual stresses within steel tubes.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: May 17, 2016
    Assignee: Tenaris Connections Limited
    Inventors: Eduardo Altschuler, Pablo Egger
  • Patent number: 9222156
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 29, 2015
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Patent number: 9188252
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: November 17, 2015
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20140057121
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Patent number: 8636856
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 28, 2014
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20130264123
    Abstract: Embodiments of the present disclosure are directed to methods of manufacturing steel tubes that can be used for mining exploration, and rods made by the same. Embodiments of the methods include a quenching of steel tubes from an austenitic temperature prior to a cold drawing, thereby increasing mechanical properties within the steel tube, such as yield strength, impact toughness, hardness, and abrasion resistance. Embodiments of the methods reduce the manufacturing step of quenching and tempering ends of a steel tube to compensate for wall thinning during threading operations. Embodiments of the methods also tighten dimensional tolerances and reduce residual stresses within steel tubes.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Applicant: Tenaris Connections Limited
    Inventors: Eduardo Altschuler, Pablo Egger
  • Patent number: 8414715
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20120211131
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20120211132
    Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: Siderca S.A.I.C.
    Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
  • Publication number: 20090101242
    Abstract: A low carbon alloy steel tube and a method of manufacturing the same, especially for a stored gas inflator pressure vessel, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon, about 0.3% to about 1.5% manganese, about 0.05% to about 0.5% silicon, up to about 0.015% sulfur, up to about 0.025% phosphorous, and at least one of the following elements: up to about 0.30% vanadium, upto t about 0.10% aluminum, up to about 0.06% niobium, up to about 1% chromium, up to about 0.70 % nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements, and the balance iron and incidental impurities. After a high heating rate of about 100° C. per second; rapidly and fully quenching the steel tubing in a water-based quenching solution at a cooling rate of about 100° C. per second. The steel has a tensile strength of at least about 145 ksi and as high as 220 ksi and exhibits ductile behavior at temperatures as low as ?100° C.
    Type: Application
    Filed: December 17, 2008
    Publication date: April 23, 2009
    Applicant: TENARIS CONNECTIONS A.G.
    Inventors: Edgardo Oscar Lopez, Eduardo Altschuler
  • Publication number: 20060169368
    Abstract: A low carbon alloy steel tube and a method of manufacturing the same, especially for a stored gas inflator pressure vessel, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon, about 0.3% to about 1.5% manganese, about 0.05% to about 0.5% silicon, up to about 0.015% sulfur, up to about 0.025% phosphorous, and at least one of the following elements: up to about 0.30% vanadium, upto t about 0.10% aluminum, up to about 0.06% niobium, up to about 1% chromium, up to about 0.70% nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements, and the balance iron and incidental impurities. After a high heating rate of about 100° C. per second; rapidly and fully quenching the steel tubing in a water-based quenching solution at a cooling rate of about 100° C. per second. The steel has a tensile strength of at least about 145 ksi and as high as 220 ksi and exhibits ductile behavior at temperatures as low as ?100° C.
    Type: Application
    Filed: April 3, 2006
    Publication date: August 3, 2006
    Inventors: Edgardo Lopez, Eduardo Altschuler
  • Publication number: 20050076975
    Abstract: A low carbon alloy steel tube and a method of manufacturing the same, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon; about 0.5% to about 1.5% manganese; about 0.1% to about 0.5% silicon; up to about 0.015% sulfur; up to about 0.025% phosphorous; up to about 0.50% nickel; about 0.1% to about 1.0% chromium; about 0.1% to about 1.0% molybdenum; about 0.01% to about 0.10% vanadium; about 0.01% to about 0.10% titanium; about 0.05% to about 0.35% copper; about 0.010% to about 0.050% aluminum; up to about 0.05% niobium; up to about 0.15% residual elements; and the balance iron and incidental impurities. The steel has a tensile strength of at least about 145 ksi and exhibits ductile behavior at temperatures as low as ?60° C.
    Type: Application
    Filed: October 5, 2004
    Publication date: April 14, 2005
    Applicant: TENARIS CONNECTIONS A.G.
    Inventors: Edgardo Lopez, Eduardo Altschuler