Patents by Inventor Edward Augustyniak

Edward Augustyniak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190149119
    Abstract: Systems and methods for adjusting impedances or power or a combination thereof across multiple plasma processing stations are described. One of the systems includes a first radio frequency (RF) generator that generates a first RF signal having a first frequency, a second RF generator that generates a second RF signal having a second frequency, and a first matching network coupled to the first RF generator to receive the first RF signal. The first impedance matching network outputs a first modified RF signal upon receiving the first RF signal. The system further includes a second matching network coupled to the second RF generator to receive the second RF signal. The second matching network outputs a second modified RF signal upon receiving the second RF signal. The system further includes a combiner and distributor coupled to an output of the first matching network and an output of the second matching network.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Inventors: Sunil Kapoor, George Thomas, Yaswanth Rangineni, Edward Augustyniak
  • Patent number: 10224182
    Abstract: A system for reducing parasitic plasma in a semiconductor process comprises a first surface and a plurality of dielectric layers that are arranged between an electrode and the first surface. The first surface and the electrode have substantially different electrical potentials. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap and the third gap are selected to prevent parasitic plasma between the first surface and the electrode during the semiconductor process.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 5, 2019
    Assignee: NOVELLUS SYSTEMS, INC.
    Inventors: Douglas Keil, Edward Augustyniak, Karl Leeser, Mohamed Sabri
  • Patent number: 10187032
    Abstract: Systems and methods for adjusting impedances or power or a combination thereof across multiple plasma processing stations are described. One of the systems includes a first radio frequency (RF) generator that generates a first RF signal having a first frequency, a second RF generator that generates a second RF signal having a second frequency, and a first matching network coupled to the first RF generator to receive the first RF signal. The first impedance matching network outputs a first modified RF signal upon receiving the first RF signal. The system further includes a second matching network coupled to the second RF generator to receive the second RF signal. The second matching network outputs a second modified RF signal upon receiving the second RF signal. The system further includes a combiner and distributor coupled to an output of the first matching network and an output of the second matching network.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Sunil Kapoor, George Thomas, Yaswanth Rangineni, Edward Augustyniak
  • Publication number: 20180371615
    Abstract: A faceplate for a gas distribution system of a plasma processing chamber includes a faceplate body having a first surface, a second surface opposite to the first surface and a side surface. A first plurality of holes in the faceplate body extends from the first surface to the second surface. At least some of the first plurality of holes has a first size dimension and a second size dimension in a plane parallel to the first surface. The first size dimension is transverse to the second size dimension. The first size dimension is less than 3 plasma sheath thicknesses of plasma generated by the plasma processing chamber. The second size dimension is greater than 2 times the first size dimension.
    Type: Application
    Filed: September 4, 2018
    Publication date: December 27, 2018
    Inventors: Jeremy Tucker, Edward Augustyniak
  • Patent number: 10128160
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region during multiple sequential plasma processing cycles of a plasma processing operation. At least one electrical sensor connected to the electrode measures a radiofrequency parameter on the electrode during each of the multiple sequential plasma processing cycles. A value of the radiofrequency parameter as measured on the electrode is determined for each of the multiple sequential plasma processing cycles. A determination is made as to whether or not any indicatory trend or change exists in the values of the radiofrequency parameter as measured on the electrode over the multiple sequential plasma processing cycles, where the indicatory trend or change indicates formation of a plasma instability during the plasma processing operation.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: November 13, 2018
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Ramesh Chandrasekharan, Edward Augustyniak, Douglas Keil
  • Patent number: 10121708
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region. Optical emissions are collected from the plasma using one or more optical emission collection devices, such as optical fibers, charge coupled device cameras, photodiodes, or the like. The collected optical emissions are analyzed to determine whether or not an optical signature of a plasma instability exists in the collected optical emissions. Upon determining that the optical signature of the plasma instability does exist in the collected optical emissions, at least one plasma generation parameter is adjusted to mitigate formation of the plasma instability.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 6, 2018
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Edward Augustyniak, Douglas Keil
  • Patent number: 10081869
    Abstract: A substrate processing system includes a processing chamber and an upper electrode arranged in the processing chamber. A pedestal is configured to support a substrate during processing and includes a lower electrode. An RF generating system is configured to generate RF plasma between the upper electrode and the lower electrode by supplying an RF voltage. A bias generating circuit is configured to selectively supply a DC bias voltage to one of the upper electrode and the lower electrode. A start of the DC bias voltage is initiated one of a first predetermined period before the RF plasma is extinguished and a second predetermined period after the RF plasma is extinguished. A substrate movement system is configured to move the substrate relative to the pedestal while the DC bias voltage is generated.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: September 25, 2018
    Assignee: Lam Research Corporation
    Inventors: Edward Augustyniak, Christopher James Ramsayer, Akhil N. Singhal, Kareem Boumatar
  • Patent number: 10077497
    Abstract: A faceplate for a gas distribution system of a plasma processing chamber includes a faceplate body having a first surface, a second surface opposite to the first surface and a side surface. A first plurality of holes in the faceplate body extends from the first surface to the second surface. At least some of the first plurality of holes has a first size dimension and a second size dimension in a plane parallel to the first surface. The first size dimension is transverse to the second size dimension. The first size dimension is less than 3 plasma sheath thicknesses of plasma generated by the plasma processing chamber. The second size dimension is greater than 2 times the first size dimension.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 18, 2018
    Assignee: Lam Research Corporation
    Inventors: Jeremy Tucker, Edward Augustyniak
  • Publication number: 20180175819
    Abstract: Systems and methods for negating an impedance associated with parasitic capacitance are described. One of the systems includes a plasma chamber having a housing. The housing includes a pedestal, a showerhead situated above the pedestal to face the pedestal, and a ceiling located above the showerhead. The system further includes a radio frequency (RF) transmission line coupled to the plasma chamber for transferring a modified RF signal to the showerhead. The system includes a shunt circuit coupled within a pre-determined distance from the ceiling. The shunt circuit is coupled to the RF transmission line for negating the impedance associated with the parasitic capacitance within the housing.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Inventors: Yaswanth Rangineni, Sunil Kapoor, Edward Augustyniak, Yukinori Sakiyama
  • Patent number: 9997422
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency signals of a first signal frequency are supplied to the plasma generation region to generate a plasma within the plasma generation region. Formation of a plasma instability is detected within the plasma based on supply of the radiofrequency signals of the first signal frequency. After detecting formation of the plasma instability, radiofrequency signals of a second signal frequency are supplied to the plasma generation region in lieu of the radiofrequency signals of the first signal frequency to generate the plasma. The second signal frequency is greater than the first signal frequency and is set to cause a reduction in ion energy within the plasma and a corresponding reduction in secondary electron emission from the wafer caused by ion interaction with the wafer.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: June 12, 2018
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Yukinori Sakiyama, Yaswanth Rangineni, Edward Augustyniak, Douglas Keil, Ramesh Chandrasekharan, Adrien LaVoie, Karl Leeser
  • Patent number: 9953887
    Abstract: In situ wafer metrology is conducted to reliably obtain deposition thickness for each successive layer in a multi-layer deposition. A wafer to be processed is positioned in a processing station of a deposition process tool, the process tool having a reflectometer metrology apparatus for optically determining thickness of a deposited layer on the wafer. Prior to commencing a deposition, the wafer is aligned in the processing station such that an optical metrology spot generated by the reflectometer metrology apparatus will align with an unpatterned central region of a die on a wafer during a deposition conducted on the wafer in the tool. Thereafter, the thickness of a deposited layer on the wafer is reliably measured and monitored in situ.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: April 24, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Boaz Kenane, Edward Augustyniak
  • Patent number: 9941113
    Abstract: Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: April 10, 2018
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Yukinori Sakiyama, Edward Augustyniak, Karl Leeser, Chunhai Ji
  • Publication number: 20180076100
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region during multiple sequential plasma processing cycles of a plasma processing operation. At least one electrical sensor connected to the electrode measures a radiofrequency parameter on the electrode during each of the multiple sequential plasma processing cycles. A value of the radiofrequency parameter as measured on the electrode is determined for each of the multiple sequential plasma processing cycles. A determination is made as to whether or not any indicatory trend or change exists in the values of the radiofrequency parameter as measured on the electrode over the multiple sequential plasma processing cycles, where the indicatory trend or change indicates formation of a plasma instability during the plasma processing operation.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: Yukinori Sakiyama, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Ramesh Chandrasekharan, Edward Augustyniak, Douglas Keil
  • Publication number: 20180068833
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume. A showerhead includes a stem portion having one end connected adjacent to an upper surface of the processing chamber. A base portion is connected to an opposite end of the stem portion and extends radially outwardly from the stem portion. The showerhead is configured to introduce at least one of process gas and purge gas into the reaction volume. A plasma generator is configured to selectively generate RF plasma in the reaction volume. An edge tuning system includes a collar and a parasitic plasma reducing element that is located around the stem portion between the collar and an upper surface of the showerhead. The parasitic plasma reducing element is configured to reduce parasitic plasma between the showerhead and the upper surface of the processing chamber.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 8, 2018
    Inventors: Hu Kang, Adrien LaVoie, Shankar Swaminathan, Jun Qian, Chloe Baldasseroni, Frank Pasquale, Andrew Duvall, Ted Minshall, Jennifer Petraglia, Karl Leeser, David Smith, Sesha Varadarajan, Edward Augustyniak, Douglas Keil
  • Publication number: 20180025930
    Abstract: A system for controlling of wafer bow in plasma processing stations is described. The system includes a circuit that provides a low frequency RF signal and another circuit that provides a high frequency RF signal. The system includes an output circuit and the stations. The output circuit combines the low frequency RF signal and the high frequency RF signal to generate a plurality of combined RF signals for the stations. Amount of low frequency power delivered to one of the stations depends on wafer bow, such as non-flatness of a wafer. A bowed wafer decreases low frequency power delivered to the station in a multi-station chamber with a common RF source. A shunt inductor is coupled in parallel to each of the stations to increase an amount of current to the station with a bowed wafer. Hence, station power becomes less sensitive to wafer bow to minimize wafer bowing.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 25, 2018
    Inventors: Edward Augustyniak, David French, Sunil Kapoor, Yukinori Sakiyama, George Thomas
  • Patent number: 9875883
    Abstract: A process chamber for detecting formation of plasma during a semiconductor wafer processing, includes an upper electrode, for providing a gas chemistry to the process chamber. The upper electrode is connected to a radio frequency (RF) power source through a match network to provide RF power to the wafer cavity to generate a plasma. The process chamber also includes a lower electrode for receiving and supporting the semiconductor wafer during the deposition process. The lower electrode is disposed in the process chamber so as to define a wafer cavity between a surface of the upper electrode and a top surface of the lower electrode. The lower electrode is electrically grounded. A coil sensor is disposed at a base of the lower electrode that extends outside the process chamber. The coil sensor substantially surrounds the base of the lower electrode. The coil sensor is configured to measure characteristics of RF current conducting through the wafer cavity.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 23, 2018
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Yaswanth Rangineni, Jeremy Tucker, Douglas Keil, Edward Augustyniak, Sunil Kapoor
  • Publication number: 20170365907
    Abstract: Systems and methods for adjusting impedances or power or a combination thereof across multiple plasma processing stations are described. One of the systems includes a first radio frequency (RF) generator that generates a first RF signal having a first frequency, a second RF generator that generates a second RF signal having a second frequency, and a first matching network coupled to the first RF generator to receive the first RF signal. The first impedance matching network outputs a first modified RF signal upon receiving the first RF signal. The system further includes a second matching network coupled to the second RF generator to receive the second RF signal. The second matching network outputs a second modified RF signal upon receiving the second RF signal. The system further includes a combiner and distributor coupled to an output of the first matching network and an output of the second matching network.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 21, 2017
    Inventors: Sunil Kapoor, George Thomas, Yaswanth Rangineni, Edward Augustyniak
  • Publication number: 20170338085
    Abstract: A process chamber for detecting formation of plasma during a semiconductor wafer processing, includes an upper electrode, for providing a gas chemistry to the process chamber. The upper electrode is connected to a radio frequency (RF) power source through a match network to provide RF power to the wafer cavity to generate a plasma. The process chamber also includes a lower electrode for receiving and supporting the semiconductor wafer during the deposition process. The lower electrode is disposed in the process chamber so as to define a wafer cavity between a surface of the upper electrode and a top surface of the lower electrode. The lower electrode is electrically grounded. A coil sensor is disposed at a base of the lower electrode that extends outside the process chamber. The coil sensor substantially surrounds the base of the lower electrode. The coil sensor is configured to measure characteristics of RF current conducting through the wafer cavity.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 23, 2017
    Inventors: Yukinori Sakiyama, Yaswanth Rangineni, Jeremy Tucker, Douglas Keil, Edward Augustyniak, Sunil Kapoor
  • Patent number: 9824941
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency power is supplied to the electrode to generate a plasma within the plasma generation region during multiple sequential plasma processing cycles of a plasma processing operation. At least one electrical sensor connected to the electrode measures a radiofrequency parameter on the electrode during each of the multiple sequential plasma processing cycles. A value of the radiofrequency parameter as measured on the electrode is determined for each of the multiple sequential plasma processing cycles. A determination is made as to whether or not any indicatory trend or change exists in the values of the radiofrequency parameter as measured on the electrode over the multiple sequential plasma processing cycles, where the indicatory trend or change indicates formation of a plasma instability during the plasma processing operation.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 21, 2017
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Ramesh Chandrasekharan, Edward Augustyniak, Douglas Keil
  • Publication number: 20170330744
    Abstract: Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 16, 2017
    Inventors: Douglas Keil, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Yukinori Sakiyama, Edward Augustyniak, Karl Leeser, Chunhai Ji