Patents by Inventor Edward David Thompson

Edward David Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200225066
    Abstract: A sensor for detecting an amount of current flowing in a wire wherein displacement of a sensing mirror is used in an interferometer to enable determination of the amount of current. The sensor includes a magnetostrictive element located within a magnetic field formed by the wire. The sensor also includes a position sensor that detects a size increase of the magnetostrictive element. In addition, the sensor includes an amplifying device that amplifies the size increase of the magnetostrictive element by a predetermined amplification factor to provide an amplified size increase. Further, the sensor includes a displacement device that displaces the sensing mirror by an amount corresponding to the amplified size increase.
    Type: Application
    Filed: August 1, 2017
    Publication date: July 16, 2020
    Inventors: Evangelos V. Diatzikis, Edward David Thompson
  • Patent number: 10539602
    Abstract: A system that applies a counteracting voltage or current to a rotating shaft to minimize a grounding voltage signal of the shaft, measures and analyzes the counteracting signal, and provides expert system logic that compares prior learned waveforms and models of baseline, fault, and degradation waveforms to operational waveforms to determine and predict faults and degradation events. Self-learning logic analyzes the operational waveforms to look for changes, and finds or predicts fault and degradation events in relation to archived characteristics of earlier waveforms. It then adds characteristics of predictive waveforms to the database of model waveforms, and updates rules and thresholds in the expert logic based on the found predictors. It may further calculate and continuously refine a counteracting signal waveform to minimize the shaft grounding waveform.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 21, 2020
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Edward David Thompson
  • Patent number: 10458273
    Abstract: A blade vibration monitor including a self-adjusting sensor gap mechanism is provided. The blade vibration monitor includes a probe configured to be disposed in a mounting hole within a turbine casing of a steam turbine. A proximity sensor is disposed within a tip of the probe producing a signal in response to a turbine blade passing the sensor. A positioning means is used to position a depth of the probe with respect to the mounting hole. A processor processes the signal to determine a gap distance between the probe and the turbine blade. Based on the determined gap distance the processor controls the positioning means to adjust the probe depth relative to the mounting hole in order to set the gap distance in real time to a minimal gap distance. A method for setting a gap distance between a turbine blade tip and a proximity sensor is also provided.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 29, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Edward David Thompson
  • Patent number: 10337944
    Abstract: An online real time steam or gas turbine engine rotor balancing system is incorporated in a rotor balance plane. A selectively displaceable balancing weight is coupled to the rotor and is selectively displaced by a motor that is coupled to the balancing weight. The motor selectively displaces the balancing weight along a displacement path that is in the balance plane. A turbine engine rotor vibration monitoring system monitors rotor vibration in real-time. A control system is coupled to rotor vibration monitoring system and the motor, for determining in real time a desired balance weight displacement position to counteract the monitored rotor vibration. The controller selectively causes the motor to displace the balancing weight to the desired displacement position. The motor power source is an inductive power source or a permanent magnet generator.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 2, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Edward David Thompson, David R. Tiffany, Benjamin E. Bassford, IV
  • Patent number: 10267872
    Abstract: A device for streaming magnetic flux data generated by an electrical generator for a power plant. The device includes a flux probe located on the generator to enable detection of a magnetic flux of the generator. The device also includes a computer having an interface, wherein the computer includes an analog-to-digital converter. In addition, the device includes a calibration circuit attached to the flux probe by a first cable and the interface by a second cable. The calibration circuit measures a resistance of the second cable and a voltage of the flux probe wherein ends of the second cable are shorted when measuring the cable resistance and the flux probe voltage. A gain is determined based on the cable resistance and flux probe voltage to provide a suitable input voltage at the interface to deliver the magnetic flux data to the computer.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 23, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Edward David Thompson
  • Publication number: 20190079150
    Abstract: A device for streaming magnetic flux data generated by an electrical generator for a power plant. The device includes a flux probe located on the generator to enable detection of a magnetic flux of the generator. The device also includes a computer having an interface, wherein the computer includes an analog-to-digital converter. In addition, the device includes a calibration circuit attached to the flux probe by a first cable and the interface by a second cable. The calibration circuit measures a resistance of the second cable and a voltage of the flux probe wherein ends of the second cable are shorted when measuring the cable resistance and the flux probe voltage. A gain is determined based on the cable resistance and flux probe voltage to provide a suitable input voltage at the interface to deliver the magnetic flux data to the computer.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 14, 2019
    Inventor: Edward David Thompson
  • Publication number: 20190032506
    Abstract: A blade vibration monitor including a self-adjusting sensor gap mechanism is provided. The blade vibration monitor includes a probe configured to be disposed in a mounting hole within a turbine casing of a steam turbine. A proximity sensor is disposed within a tip of the probe producing a signal in response to a turbine blade passing the sensor. A positioning means is used to position a depth of the probe with respect to the mounting hole. A processor processes the signal to determine a gap distance between the probe and the turbine blade. Based on the determined gap distance the processor controls the positioning means to adjust the probe depth relative to the mounting hole in order to set the gap distance in real time to a minimal gap distance. A method for setting a gap distance between a turbine blade tip and a proximity sensor is also provided.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 31, 2019
    Inventor: EDWARD DAVID THOMPSON
  • Publication number: 20180113047
    Abstract: An online real time steam or gas turbine engine rotor balancing system is incorporated in a rotor balance plane. A selectively displaceable balancing weight is coupled to the rotor and is selectively displaced by a motor that is coupled to the balancing weight. The motor selectively displaces the balancing weight along a displacement path that is in the balance plane. A turbine engine rotor vibration monitoring system monitors rotor vibration in real-time. A control system is coupled to rotor vibration monitoring system and the motor, for determining in real time a desired balance weight displacement position to counteract the monitored rotor vibration. The controller selectively causes the motor to displace the balancing weight to the desired displacement position. The motor power source is an inductive power source or a permanent magnet generator.
    Type: Application
    Filed: January 27, 2017
    Publication date: April 26, 2018
    Inventors: Edward David Thompson, David R. Tiffany, Benjamin E. Bassford, IV
  • Patent number: 9910093
    Abstract: A device and method for detecting and analyzing faults in a generator stator are disclosed. The device and method include measuring a direct current component of a neutral ground current in a generator stator grounding conductor, analyzing the direct current flow and comparing it with other ground fault indicators, and providing diagnosis and recommended actions based on the analysis. The direct current flow is measured by a sensitive direct current sensor that may also measure AC components via oscillations in the current measurement, such as a Hall Effect sensor, placed on the generator stator grounding conductor. The analysis of the direct current signal includes consideration of the generator operating conditions and environmental conditions, and also includes comparison to historical data representing both normal and abnormal operation of the generator. Alarms and advisories are provided when generator faults are detected or predicted.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: March 6, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Edward David Thompson, James F. Lau
  • Publication number: 20180026498
    Abstract: A shaft grounding system and a method for ground a shaft are presented. The shaft grounding system includes a shaft grounding assembly. An insulation layer may be arranged in the shaft grounding assembly that splits the shaft grounding assembly to a first part and a second part. The first part includes a measurement circuit having high impedance such that virtually all current of the shaft travels through the second part. The shaft grounding system with the split shaft grounding assembly provides an accurate shaft voltage measurement due to the high impedance of the measuring circuit. The shaft grounding system presented is very low cost, installs using the existing shaft ground mounting components, and allows condition based maintenance of the shaft grounding system.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 25, 2018
    Inventor: Edward David Thompson
  • Publication number: 20170285086
    Abstract: A system that applies a counteracting voltage or current to a rotating shaft to minimize a grounding voltage signal of the shaft, measures and analyzes the counteracting signal, and provides expert system logic that compares prior learned waveforms and models of baseline, fault, and degradation waveforms to operational waveforms to determine and predict faults and degradation events. Self-learning logic analyzes the operational waveforms to look for changes, and finds or predicts fault and degradation events in relation to archived characteristics of earlier waveforms. It then adds characteristics of predictive waveforms to the database of model waveforms, and updates rules and thresholds in the expert logic based on the found predictors. It may further calculate and continuously refine a counteracting signal waveform to minimize the shaft grounding waveform.
    Type: Application
    Filed: November 29, 2016
    Publication date: October 5, 2017
    Inventor: Edward David Thompson
  • Patent number: 9588007
    Abstract: An online real time steam or gas turbine engine rotor balancing system is incorporated in a rotor balance plane. A selectively displaceable balancing weight is coupled to the rotor and is selectively displaced by a motor that is coupled to the balancing weight. The motor selectively displaces the balancing weight along a displacement path that is in the balance plane. A turbine engine rotor vibration monitoring system monitors rotor vibration in real-time. A control system is coupled to rotor vibration monitoring system and the motor, for determining in real time a desired balance weight displacement position to counteract the monitored rotor vibration. The controller selectively causes the motor to displace the balancing weight to the desired displacement position. The motor power source is an inductive power source or a permanent magnet generator.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: March 7, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Edward David Thompson, David R. Tiffany, Benjamin E. Bassford, IV
  • Publication number: 20160266206
    Abstract: A device and method for detecting and analyzing faults in a generator stator are disclosed. The device and method include measuring a direct current component of a neutral ground current in a generator stator grounding conductor, analyzing the direct current flow and comparing it with other ground fault indicators, and providing diagnosis and recommended actions based on the analysis. The direct current flow is measured by a sensitive direct current sensor that may also measure AC components via oscillations in the current measurement, such as a Hall Effect sensor, placed on the generator stator grounding conductor. The analysis of the direct current signal includes consideration of the generator operating conditions and environmental conditions, and also includes comparison to historical data representing both normal and abnormal operation of the generator. Alarms and advisories are provided when generator faults are detected or predicted.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 15, 2016
    Inventors: Edward David Thompson, James F. Lau
  • Patent number: 9443201
    Abstract: Systems and methods to monitor a signal from an apparatus are disclosed. A feature extracted from the signal is automatically defined. Signals are received over a period of time wherein the apparatus is in a normal operational mode. Features are classified in a learning mode and are applied to create a reference model that defines a within-normal operational mode. In a testing mode a signal generated by the apparatus is received, a feature is extracted and classified. Instantaneous data generated in operational mode by the apparatus is classified by the system as abnormal if it does not lie within boundaries of the reference model or contains information/structure in an orthogonal subspace. A learned reference model is augmented by a user or automatically. In one illustrative example the apparatus is a power generation equipment and the signal is an acoustic signal.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 13, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Heiko Claussen, Justinian Rosca, Hans-Gerd Brummel, Edward David Thompson
  • Publication number: 20150362396
    Abstract: An online real time steam or gas turbine engine rotor balancing system is incorporated in a rotor balance plane. A selectively displaceable balancing weight is coupled to the rotor and is selectively displaced by a motor that is coupled to the balancing weight. The motor selectively displaces the balancing weight along a displacement path that is in the balance plane. A turbine engine rotor vibration monitoring system monitors rotor vibration in real-time. A control system is coupled to rotor vibration monitoring system and the motor, for determining in real time a desired balance weight displacement position to counteract the monitored rotor vibration. The controller selectively causes the motor to displace the balancing weight to the desired displacement position. The motor power source is an inductive power source or a permanent magnet generator.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Edward David Thompson, David R. Tiffany, Benjamin E. Bassford, IV
  • Patent number: 9188021
    Abstract: A blade vibration monitor backpressure limiting system (BVMBLS), that in addition to direct blade vibration and condenser backpressure monitoring utilizes other plural types of other parallel, real time monitored power plant operation state (OS) information that influences blade vibration. The system references previously stored information in an information storage device that associates respective types of monitored OS information with blade vibration. The BVMBLS determines in real time a likelihood of whether any of the monitored operation states, alone or in combination with other types of monitored operation states, is indicative of a turbine blade vibration safe operation (SO). The BVMBLS determination is utilized to increase or reduce power generation load incrementally so that power efficiency and maximum load is enhanced while turbine blade vibration is maintained in a safe operation state. The previously stored information is updated to new association information.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: November 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Edward David Thompson, Michael Twerdochlib
  • Patent number: 9188632
    Abstract: Electrical faults are detected in electrical distribution systems (EDS) by detection and location of radio frequency (RF) emissions generated by the fault with multiple time-synchronized radio frequency monitors (RFM) distributed about the EDS. The RFMs are coupled to a self-learning, electrical fault monitor (EFM) that characterizes and/or locates electrical faults based on operating state (OS) patterns learned from transmission of test signals generated within the EDS. RF emissions data samples are characterized as safe operation (SO) states or potential electrical faults by accessing a base of stored knowledge concerning fault emission characteristics and/or synchronized time of arrival at each RFM. Information in the base of stored knowledge is updated to include new EDS operating states (OS).
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: November 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Jon Patrick Oak, Edward David Thompson
  • Publication number: 20150316606
    Abstract: Electrical faults are detected in electrical distribution systems (EDS) by detection and location of radio frequency (RF) emissions generated by the fault with multiple time-synchronized radio frequency monitors (RFM) distributed about the EDS. The RFMs are coupled to a self-learning, electrical fault monitor (EFM) that characterizes and/or locates electrical faults based on operating state (OS) patterns learned from transmission of test signals generated within the EDS. RF emissions data samples are characterized as safe operation (SO) states or potential electrical faults by accessing a base of stored knowledge concerning fault emission characteristics and/or synchronized time of arrival at each RFM. Information in the base of stored knowledge is updated to include new EDS operating states (OS).
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Jon Patrick Oak, Edward David Thompson
  • Publication number: 20150128596
    Abstract: A blade vibration monitor backpressure limiting system (BVMBLS), that in addition to direct blade vibration and condenser backpressure monitoring utilizes other plural types of other parallel, real time monitored power plant operation state (OS) information that influences blade vibration. The system references previously stored information in an information storage device that associates respective types of monitored OS information with blade vibration. The BVMBLS determines in real time a likelihood of whether any of the monitored operation states, alone or in combination with other types of monitored operation states, is indicative of a turbine blade vibration safe operation (SO). The BVMBLS determination is utilized to increase or reduce power generation load incrementally so that power efficiency and maximum load is enhanced while turbine blade vibration is maintained in a safe operation state. The previously stored information is updated to new association information.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Inventors: Edward David Thompson, Michael Twerdochlib
  • Patent number: 9016991
    Abstract: A generator stator core through-bolt tensioning device that automatically tightens the nut on the through-bolts that hold together and compress laminate plates of the stator core in a high voltage generator. A controller receives a signal from a measuring device, such as a fiber Bragg grating that measures the strain on the bolt, and based on that signal determines whether the nut needs to be tightened. If the controller determines that tightening is necessary, it will cause the tensioning device to automatically tighten the nut while the generator is in service, and use the measuring device to provide feedback of the tensioning of the through-bolt to know when to stop the device from tightening the nut.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 28, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Michael Twerdochlib, Edward David Thompson, Evangelos V. Diatzikis