Patents by Inventor Edward G. Beistle

Edward G. Beistle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11510290
    Abstract: An induction heating system includes an induction heating head assembly configured to move relative to a workpiece. The induction heating system may also include a temperature sensor assembly configured to detect a temperature of the workpiece and/or a travel sensor assembly configured to detect a position, movement, or direction of movement of the induction heating head assembly relative to the workpiece, and to transmit feedback signals to a controller configured to adjust the power provided to the induction heating head assembly by a power source based at least in part on the feedback signals. In certain embodiments, the induction heating system may also include a connection box configured to receive the feedback signals, to perform certain conversions of the feedback signals, and to provide the feedback signals to the power source.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 22, 2022
    Assignee: Illinois Tool Works Inc.
    Inventors: Edward G. Beistle, Kevin John Mlnarik, Paul David Verhagen
  • Publication number: 20220361478
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Phillip J. Howard, Richard V. Baxter, JR., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 11432542
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 6, 2022
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Publication number: 20210378231
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Phillip J. Howard, Richard V. Baxter, Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 11185940
    Abstract: A method for controlling an output current of a welding power supply includes detecting, using control circuitry of the welding power supply, a root mean square (RMS) current setting. The method also includes calculating, using the control circuitry, an average current command based on the RMS current setting. The method also includes controlling, using the control circuitry, the output current using the average current command to produce an output substantially the same as the RMS current setting.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 30, 2021
    Assignee: Illinois Tool Works Inc.
    Inventors: James F. Ulrich, Jeremy D. Overesch, Edward G. Beistle
  • Patent number: 11116203
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 14, 2021
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 11076454
    Abstract: An induction heating system includes an induction heating head assembly configured to move relative to a workpiece. The induction heating system may also include a temperature sensor assembly configured to detect a temperature of the workpiece and/or a travel sensor assembly configured to detect a position, movement, or direction of movement of the induction heating head assembly relative to the workpiece, and to transmit feedback signals to a controller configured to adjust the power provided to the induction heating head assembly by a power source based at least in part on the feedback signals. In certain embodiments, the induction heating system may also include a connection box configured to receive the feedback signals, to perform certain conversions of the feedback signals, and to provide the feedback signals to the power source.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: July 27, 2021
    Assignee: Illinois Tool Works Inc.
    Inventors: Paul David Verhagen, Paul William Garvey, Edward G. Beistle, Scott Stephen Liebert, Kevin John Mlnarik, Tiffany Anne Carter
  • Patent number: 11007597
    Abstract: A method of operating a welding wire feeder includes receiving an input power from a welding power source, actuating a power relay to close and open a first current carrying path for application of the input power, and actuating bypass circuitry coupled in parallel to the power relay to close and open a second current carrying path in coordination with actuating the power relay. The method of operating the welding wire feeder also includes providing a welding wire to a welding torch.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 18, 2021
    Assignee: Illinois Tool Works Inc.
    Inventors: Anthony Van Bergen Salsich, Brian Lee Ott, Edward G. Beistle
  • Patent number: 10994356
    Abstract: A welding device for remotely controlling welding power supply settings is provided. One embodiment of the welding device includes a welding pendant having a control panel configured to control a plurality of settings of a welding power supply. The control panel is not part of the welding power supply and the plurality of settings includes a welding current output by the welding power supply. The welding pendant also includes a welding power input configured to receive welding power and data from the welding power supply via a welding power cable. The welding power is combined with the data such that the data is provided over the welding power cable.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 4, 2021
    Assignee: ILLINOIS TOOL WORKS INC.
    Inventors: Markus M. Dantinne, Edward G. Beistle, Michael W. Roth, Anthony VanBergen Salsich
  • Patent number: 10973223
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: April 13, 2021
    Assignee: Dow AgroSciences LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 10843288
    Abstract: A method of operating a welding wire feeder includes receiving an input power signal from a power source and converting the input power signal to a bus power signal on an internal bus at a first time with a boost converter. The method also includes detecting bus voltage and bus current of the bus power signal on the internal bus and converting the bus power signal to a welding output signal at a second time with a buck converter. The welding output signal is suitable for a controlled waveform welding process. The method also includes detecting output voltage and output current of the weld output, and reducing a voltage ripple on the internal bus based at least in part on the detected bus and output current and/or voltages.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: November 24, 2020
    Assignee: Illinois Tool Works Inc.
    Inventors: Anthony Van Bergen Salsich, Edward G. Beistle
  • Publication number: 20200245611
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: April 20, 2020
    Publication date: August 6, 2020
    Inventors: Phillip J. Howard, Richard V. Baxter, JR., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Publication number: 20200221687
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: March 25, 2020
    Publication date: July 16, 2020
    Inventors: Phillip J. Howard, Richard V. Baxter, JR., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Publication number: 20200189021
    Abstract: Systems and methods for pairing welding devices in a welding system. In one method, the method includes sending a pairing request from a first welding device to a second welding device. The method also includes receiving, at the first welding device, a response to the pairing request from the second welding device. The second welding device is physically connected to the first welding device. The pairing request or the response includes a change in welding power, welding consumables, or any combination thereof The method includes pairing the first welding device and the second welding device after the first welding device receives the response to the pairing request from the second welding device.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 18, 2020
    Inventors: Edward G. Beistle, Andrew D. Nelson
  • Patent number: 10638746
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: May 5, 2020
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Publication number: 20200037604
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Phillip J. Howard, Richard V. Baxter, Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 10548308
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: February 4, 2020
    Assignee: DOW AGROSCIENCES LLC
    Inventors: Phillip J. Howard, Richard V. Baxter, Jr., Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Publication number: 20190380327
    Abstract: A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Inventors: Phillip J. Howard, Richard V. Baxter, Douglas K. Brune, Uriel Kluk, Edward G. Beistle, Christopher Siler, Marc Black
  • Patent number: 10507542
    Abstract: Systems and methods for pairing welding devices in a welding system. In one method, the method includes sending a pairing request from a first welding device to a second welding device. The method also includes receiving, at the first welding device, a response to the pairing request from the second welding device. The second welding device is physically connected to the first welding device. The pairing request or the response includes a change in welding power, welding consumables, or any combination thereof. The method includes pairing the first welding device and the second welding device after the first welding device receives the response to the pairing request from the second welding device.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: December 17, 2019
    Assignee: Illinois Tool Works Inc.
    Inventors: Edward G. Beistle, Andrew D. Nelson
  • Publication number: 20190366467
    Abstract: A welding wire feeder includes a wire feed drive and wire feed control circuitry coupled to the wire feed drive to control the drive of welding wire towards the welding application. The welding wire feeder includes power conversion circuitry configured to receive input power and to convert the input power to welding output suitable for a welding application, output voltage sensors configured to measure output voltage, output current sensors configured to measure output current, and control circuitry coupled to the power conversion circuitry and to the output voltage and current sensors. The power conversion circuitry includes power storage circuitry configured to store energy and to discharge at least a portion of the stored energy during an overdraw event. The control circuitry is configured to control the output current during the overdraw event to maintain a stored energy value of the power storage circuitry greater than a desired minimum energy value.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventor: Edward G. Beistle