Patents by Inventor Edward John Fewkes

Edward John Fewkes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140105550
    Abstract: An optical connector for terminating an optical fiber may include a ferrule, a optical fiber, and an adhesive composition. The ferrule may include a fiber-receiving passage defining an inner surface and the adhesive composition may be disposed within the ferrule and in contact with the inner surface of the ferrule and the optical fiber. The adhesive composition may include a partially cross-linked resin and a thermoset resin. The adhesive composition may include between about 1 to about 85 parts by weight of the thermoset resin per 100 parts by weight of the partially cross-linked resin.
    Type: Application
    Filed: March 5, 2013
    Publication date: April 17, 2014
    Inventors: Edward John Fewkes, John Paul Krug, Ziwei Lui
  • Patent number: 8696215
    Abstract: An optical connector for terminating an optical fiber may include a ferrule, an optical fiber, and an adhesive composition. The ferrule may include a fiber-receiving passage defining an inner surface and the adhesive composition may be disposed within the ferrule and in contact with the inner surface of the ferrule and the optical fiber. The adhesive composition may include a partially cross-linked resin, where at least about 5% by weight of the partially cross-linked resin is cross-linked and at least about 5% by weight is not.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 15, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Edward John Fewkes, John Paul Krug, Ziwei Lui
  • Patent number: 8591087
    Abstract: An illumination system generating light having at least one wavelength within 200 nm to 2000 nm range. The system includes a light source and at least one light diffusing optical fiber with a plurality of nano-sized structures (e.g., voids). The optical fiber is coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 26, 2013
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephan Lvovich Logunov
  • Patent number: 8545076
    Abstract: An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: October 1, 2013
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephan Lvovich Logunov
  • Publication number: 20130088888
    Abstract: An illumination system that includes at least one light-diffusing optical fiber is disclosed. The illumination system includes at least one low-scatter light-conducting optical fiber that optically couples the at least one light-diffusing optical fiber to at least one light source. The light-diffusing optical fiber includes a light-source fiber portion having a length over which scattered light is continuously emitted. The light-source fiber portion can be bent, including wound into a coil shape. The light-diffusing optical fiber includes a plurality of nano-sized structures configured to scatter guided light traveling within the light-diffusing optical fiber out of an outer surface of the fiber.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Edward John Fewkes, Stephan Lvovich Logunov, Alranzo Boh Ruffin
  • Publication number: 20110305035
    Abstract: An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 15, 2011
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephan Lvovich Logunov
  • Patent number: 8062881
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 8022112
    Abstract: A plasticized ceramic-forming mixture and a method for stiffening the mixture, the mixture comprising a combination of inorganic powder, one or more plasticizing organic binders, a radiation-curable monomer, a photoinitiator, and water, and the method comprising stiffening the surfaces of extruded shapes of the mixture by applying electromagnetic energy to the surfaces following extrusion.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: September 20, 2011
    Assignee: Corning Incorporated
    Inventors: Michelle Dawn Fabian, Edward John Fewkes, Kevin Robert McCarthy
  • Publication number: 20110122646
    Abstract: An illumination system generating light having at least one wavelength within 200 nm a plurality of nano-sized structures (e.g., voids). The optical fiber coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Edward John Fewkes, Stephen Lvovich Logunov
  • Patent number: 7923483
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Publication number: 20110027888
    Abstract: A coated fiber for cell culture includes a fiber core having an exterior surface and a polymeric coating suitable for culturing cells disposed on at least a portion of the exterior surface of the fiber core. A polypeptide may be conjugated to the polymeric coating. A method for forming the coated fiber includes coating a polymer layer to an exterior surface of a fiber core to produce the coated fiber. The coating may occur as the fiber is being drawn.
    Type: Application
    Filed: July 16, 2010
    Publication date: February 3, 2011
    Inventors: James P. Beltzer, Michelle Dawn Fabian, Edward John Fewkes, Kevin Robert McCarthy, Florence Verrier
  • Publication number: 20100280174
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and fault the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 4, 2010
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, JR., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7776572
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: August 17, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20080145280
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 19, 2008
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Publication number: 20080125509
    Abstract: A plasticized ceramic-forming mixture and a method for stiffening the mixture, the mixture comprising a combination of inorganic powder, one or more plasticizing organic binders, a radiation-curable monomer, a photoinitiator, and water, and the method comprising stiffening the surfaces of extruded shapes of the mixture by applying electromagnetic energy to the surfaces following extrusion.
    Type: Application
    Filed: November 29, 2007
    Publication date: May 29, 2008
    Inventors: Michelle Dawn Fabian, Edward John Fewkes, Kevin Robert McCarthy
  • Patent number: 7312057
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: December 25, 2007
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 7289706
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 30, 2007
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Patent number: 7257299
    Abstract: An optical fiber ribbon includes a plurality of optical fibers encapsulated within a matrix material, where the optical fiber coating(s) and the matrix material(s), and optionally any ink layers thereon, are characterized by compatible chemical and/or physical properties, whereby the fiber coating and matrix and any ink layers therebetween can be reliably stripped from the optical fibers to afford a suitable strip cleanliness. Novel ink formulations that can be used in the making of such fiber optic ribbons, methods of making such ribbons, and their use are also described.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 14, 2007
    Assignee: Corning Incorporated
    Inventors: Ching-Kee Chien, Michelle Dawn Fabian, Edward John Fewkes, Michael James Winningham
  • Publication number: 20030199065
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Application
    Filed: March 3, 2003
    Publication date: October 23, 2003
    Applicant: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, James Arthur Griffin, Frances M. Smith, David L. Tennent
  • Patent number: 6565789
    Abstract: Hydrophobic polymer surfaces whose level of protein binding is less than about 50-80 ng/cm2 are achieved by: (1) applying a coating solution composed of a solvent and a non-ionic surfactant having a HLB number of less than 5 to the surface; and (2) drying the surface to remove the solvent and thereby bring the surfactant into direct contact with the hydrophobic polymer. The combination of a low HLB number and the drying step have been found to produce low binding surfaces which can withstand multiple washes with water and/or protein-containing solutions. Alternatively, the low binding surfaces can be produced by applying the non-ionic surfactant to the mold surfaces which contact molten polymer and form the polymer into a desired shape, e.g., into a multi-well plate, a pipette tip, or the like. Further, the low binding surfaces may be produced by incorporating non-soluble, non-ionic surfactants having an HLB number of less than or equal to 10 into a polymer blend prior to molding the article.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Edward John Fewkes, Jr., James Arthur Griffin, Frances M. Smith, David L. Tennent