Patents by Inventor Edward K. Dienes

Edward K. Dienes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5552035
    Abstract: A process for producing zeolite aggregates involves providing a formable paste composed of zeolite, a binder composed of an organic/metal oxide containing aluminum, a peptizing agent and water; forming the paste into an aggregate, preferably by extruding into an extrudate; curing the aggregate; hydro-thermally calcining the aggregate; and washing the hydro-thermally calcined aggregate with a washing medium, preferably followed by rinsing with a rinsing medium to remove residual washing medium from the aggregate. The washed and rinsed aggregate may then be permitted to equilibrate or is subjected to a drying procedure. Preferably, the washed and rinsed aggregate is again subjected to curing/hydro-thermal calcining.
    Type: Grant
    Filed: July 6, 1994
    Date of Patent: September 3, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Mark J. Potter, Jar-Lin Kao, Virginia R. Cross, Thomas H. Vanderspurt, Edward K. Dienes, Robert E. Riley, Freddie L. Tungate, Arie Bortinger
  • Patent number: 5348924
    Abstract: A process for producing zeolite aggregates involves providing a formable paste composed of zeolite, a binder composed of an organic/metal oxide containing aluminum, a peptizing agent and water; forming the paste into an aggregate, preferably by extruding into an extrudate; curing the aggregate; hydro-thermally calcining the aggregate; and washing the hydro-thermally calcined aggregate with a washing medium, preferably followed by rinsing with a rinsing medium to remove residual washing medium from the aggregate. The washed and rinsed aggregate may then be permitted to equilibrate or is subjected to a drying procedure. Preferably, the washed and rinsed aggregate is again subjected to curing/hydro-thermal calcining.
    Type: Grant
    Filed: February 23, 1993
    Date of Patent: September 20, 1994
    Assignee: Exxon Research & Engineering Co.
    Inventors: Mark J. Potter, Jar-Lin Kao, Virginia R. Cross, Thomas H. Vanderspurt, Edward K. Dienes, Robert E. Riley, Freddie L. Tungate, Arie Bortinger
  • Patent number: 5258346
    Abstract: An extruded nickel oxide on refractory oxide hydrogenation catalyst, having, in its reduced state, a nickel surface area greater than 30 m.sup.2 /gm of reduced nickel in the catalyst and 15 to about 65 volume percent of pores having diameters of about 300 to about 1000 angstroms, is highly active for the hydrogenation of aromatics in heavy hydrocarbon streams and is relatively resistant to sulfur poisoning.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: November 2, 1993
    Assignee: United Catalysts Inc.
    Inventors: Dinah C. Huang, Edward K. Dienes, Jon P. Wagner
  • Patent number: 5023225
    Abstract: Improved iron oxide catalysts for the dehydrogenation of ethylbenzene to styrene are made by forming a blend of chromium oxide and yellow iron hydrate and heating the blend to convert the yellow iron hydrate to red iron oxide prior to forming the catalyst.
    Type: Grant
    Filed: July 21, 1989
    Date of Patent: June 11, 1991
    Assignee: United Catalysts Inc.
    Inventors: David L. Williams, Karl J. Russ, Edward K. Dienes, George A. Laufer
  • Patent number: 4279781
    Abstract: A methanol synthesis catalyst which comprises a major portion by weight of the oxides of copper and zinc and a minor portion by weight of a thermal stabilizing metal oxide is useful for the synthesis of methanol from the oxides of carbon and hydrogen at relatively low temperatures. The catalyst is characterized in that the ratio of copper oxide to zinc oxide, each expressed as a metal by weight, is in the range of from 2:1 to 3.5:1 and by the intimate association with each other of copper and zinc oxides and with said thermal stabilizing oxide. Further, the catalyst is characterized in that the amount of iron oxides, as an impurity, is less than 150 parts per million.
    Type: Grant
    Filed: October 9, 1979
    Date of Patent: July 21, 1981
    Assignee: United Catalysts Inc.
    Inventors: Edward K. Dienes, Ray L. Coleman, Arthur L. Hausberger
  • Patent number: 4233180
    Abstract: A process for the conversion of carbon monoxide in synthesis gas mixtures to hydrogen and CO.sub.2 utilizes a catalyst which is active in the presence of sulfur compounds, and which comprises the oxides or sulfides of cobalt and molybdenum, supported on a shaped, relatively high surface area aluminous carrier. The carrier is stabilized by admixture with one or more rare earth metal oxides while the alumina is in the hydrated condition. The mixture of hydrated alumina and rare earth metal oxide is formed into a desired shape and calcined to convert the hydrated alumina to the oxide. Thereafter, the calcined, high surface area alumina is impregnated with the desired salts of cobalt and molybdenum and the impregnated catalyst is thereafter calcined and placed into service. The stabilized catalyst exhibits good activity at relatively low temperatures with synthesis gas mixtures containing sulfur compounds and retains its surface area and the aluminous carrier is not converted over to the alpha phase.
    Type: Grant
    Filed: November 13, 1978
    Date of Patent: November 11, 1980
    Assignee: United Catalysts Inc.
    Inventors: Arthur L. Hausberger, Edward K. Dienes
  • Patent number: 4153580
    Abstract: A catalyst for the conversion of carbon monoxide in synthesis gas mixtures to hydrogen and CO.sub.2 and which is active in the presence of sulfur compounds, comprises the oxides or sulfides of cobalt and molybdenum, supported on a shaped, relatively high surface area aluminous carrier. The carrier is stabilized by admixture with one or more rare earth metal oxides while the alumina is in the hydrated condition. The mixture of hydrated alumina and rare earth metal oxide is formed into a desired shape and calcined to convert the hydrated alumina to the oxide. Thereafter, the calcined, high surface area alumina is impregnated with the desired salts of cobalt and molybdenum and the impregnated catalyst is thereafter calcined and placed into service. The stabilized catalyst exhibits good activity at relatively low temperatures with synthesis gas mixtures containing sulfur compounds and retains its surface area and the aluminous carrier is not converted over to the alpha phase.
    Type: Grant
    Filed: December 9, 1977
    Date of Patent: May 8, 1979
    Assignee: United Catalysts Inc.
    Inventors: Arthur L. Hausberger, Edward K. Dienes