Patents by Inventor Edward K. McIntyre

Edward K. McIntyre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692749
    Abstract: An electrostatic clamp monitoring system has an electrostatic clamp configured to selectively electrostatically clamp a workpiece to a clamping surface associated therewith via one or more electrodes. A power supply is electrically coupled to the electrostatic clamp and configured to selectively supply a clamping voltage at a clamping frequency to the electrostatic clamp. A data acquisition system measures a current supplied to the one or more electrodes, and a controller integrates the measured current over time, therein determining a charge value associated a clamping force between the workpiece and electrostatic clamp. The controller is further configured to selectively vary one or more of the clamping voltage and clamping frequency based on the determined charge value, thereby maintaining a desired clamping force between the workpiece and electrostatic clamp.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 23, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward K. McIntyre, William P. Reynolds
  • Patent number: 10324121
    Abstract: An electrostatic clamp monitoring system has an electrostatic clamp configured to selectively electrostatically clamp a workpiece to a clamping surface via one or more electrodes. A power supply electrically coupled to the electrostatic clamp is configured to selectively supply a clamping voltage to the one or more electrodes. A data acquisition system is coupled to the power supply and configured to measure a current supplied to the one or more electrodes, therein defining a measured current. A controller integrates the measured current over time, therein determining a charge value associated a clamping force between the workpiece and electrostatic clamp. A memory stores the charge value associated with the clamping force over a plurality of clamping cycles, therein defining a plurality of charge values, and the controller determines a clamping capability of the electrostatic clamp based on a comparison of a currently determined charge value to the plurality of charge values.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: June 18, 2019
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward K. McIntyre, Edward J. Ladny, Nathaniel Robinson, William Davis Lee
  • Publication number: 20190172743
    Abstract: An electrostatic clamp monitoring system has an electrostatic clamp configured to selectively electrostatically clamp a workpiece to a clamping surface associated therewith via one or more electrodes. A power supply is electrically coupled to the electrostatic clamp and configured to selectively supply a clamping voltage at a clamping frequency to the electrostatic clamp. A data acquisition system measures a current supplied to the one or more electrodes, and a controller integrates the measured current over time, therein determining a charge value associated a clamping force between the workpiece and electrostatic clamp. The controller is further configured to selectively vary one or more of the clamping voltage and clamping frequency based on the determined charge value, thereby maintaining a desired clamping force between the workpiece and electrostatic clamp.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Edward K. McIntyre, William P. Reynolds
  • Patent number: 9871473
    Abstract: A system and method for clamping a workpiece to an electrostatic clamp (ESC) comprises placing a first workpiece on a surface of the ESC and applying a first set of clamping parameters to the ESC, therein clamping the first workpiece to the surface of the ESC with a first clamping force. A degree of clamping of the workpiece to the ESC is determined and the application of the first set of clamping parameters to the ESC is halted based on a process recipe. A second set of clamping parameters is applied to the ESC after halting the application of the first set of clamping parameters to the ESC, and the workpiece is removed from the surface of the ESC concurrent with the application of the second set of clamping parameters to the ESC when the degree of clamping of the workpiece to the ESC is less than or approximately equal to a threshold clamping value. The second set of clamping parameters to the ESC is further halted after removing the workpiece from the surface of the ESC.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 16, 2018
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward K. McIntyre, Thang D. Nguyen
  • Publication number: 20160087557
    Abstract: A system and method for clamping a workpiece to an electrostatic clamp (ESC) comprises placing a first workpiece on a surface of the ESC and applying a first set of clamping parameters to the ESC, therein clamping the first workpiece to the surface of the ESC with a first clamping force. A degree of clamping of the workpiece to the ESC is determined and the application of the first set of clamping parameters to the ESC is halted based on a process recipe. A second set of clamping parameters is applied to the ESC after halting the application of the first set of clamping parameters to the ESC, and the workpiece is removed from the surface of the ESC concurrent with the application of the second set of clamping parameters to the ESC when the degree of clamping of the workpiece to the ESC is less than or approximately equal to a threshold clamping value. The second set of clamping parameters to the ESC is further halted after removing the workpiece from the surface of the ESC.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 24, 2016
    Inventors: Edward K. McIntyre, Thang D. Nguyen
  • Publication number: 20140188416
    Abstract: An electrostatic clamp monitoring system is provided having an electrostatic clamp configured to selectively electrostatically clamp a workpiece to a clamping surface associated therewith via one or more electrodes. A power supply is electrically coupled to the electrostatic clamp, wherein the power supply is configured to selectively supply a clamping voltage to the one or more electrodes of the electrostatic clamp. A data acquisition system is coupled to the power supply and configured to measure a current supplied to the one or more electrodes, therein defining a measured current. A controller integrates the measured current over time, therein determining a charge value associated a clamping force between the workpiece and electrostatic clamp.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: Axcelis Technologies, Inc.
    Inventors: Edward K. McIntyre, Edward J. Ladny, Nathaniel Robertson, William Davis Lee
  • Patent number: 7875125
    Abstract: The invention features in-situ cleaning process for an ion source and associated extraction electrodes and similar components of the ion-beam producing system, which chemically removes carbon deposits, increasing service lifetime and performance, without the need to disassemble the system. In particular, an aspect of the invention is directed to an activating, catalytic, or reaction promoting species added to the reactive species to effectively convert the non-volatile molecular residue into a volatile species which can be removed by conventional means.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 25, 2011
    Assignee: SemEquip, Inc.
    Inventors: Kevin S. Cook, Dennis Manning, Edward K. McIntyre, Richard Goldberg
  • Publication number: 20090081874
    Abstract: The invention features in-situ cleaning process for an ion source and associated extraction electrodes and similar components of the ion-beam producing system, which chemically removes carbon deposits, increasing service lifetime and performance, without the need to disassemble the system. In particular, an aspect of the invention is directed to an activating, catalytic, or reaction promoting species added to the reactive species to effectively convert the non-volatile molecular residue into a volatile species which can be removed by conventional means.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 26, 2009
    Inventors: Kevin S. Cook, Dennis Manning, Edward K. McIntyre, Richard Goldberg
  • Patent number: 6608315
    Abstract: A mass analysis magnet assembly (16) is provided for use in an ion implanter (10), comprising: (i) a magnet (44) for mass analyzing an ion beam (15) output by an ion source (14), the magnet providing an interior region (49) through which the ion beam passes; and (ii) at least one strike plate (48) in part forming an outer boundary of the interior region (49). The at least one strike plate is comprised of an isotopically pure carbon-based material. The isotopically pure carbon-based material, preferably by mass greater than 99% carbon C-12, prevents neutron radiation when impacted by deuterons extracted from the ion source (14). The strike plate (48) may comprise an upper layer (56) of isotopically pure carbon C-12 isotope positioned atop a lower substrate (54).
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: August 19, 2003
    Inventors: Kourosh Saadatmand, Michael A. Graf, Edward K. McIntyre
  • Patent number: 6207964
    Abstract: A variable aperture assembly (30) is provided for controlling the amount of ion beam current passing therethrough in an ion implantation system (10). The aperture assembly (30) comprises an aperture (44) defined by opposing first and second aperture plates (44A, 44B) through which an ion beam passes; control arms (46A, 46B) connected, respectively, to the first and second aperture plates (44A, 44B); and an aperture drive mechanism (36) for simultaneously imparting movement to the control arms in opposite directions, to adjust a gap (50) between the aperture plates (44A, 44B) to thereby control the amount of current passing through the aperture (44). Each of the opposite directions in which the control arms move is generally perpendicular to an axis along which the ion beam passes. A control system (120) is also provided for automatically adjusting the aperture gap (50) based on inputs representing actual ion beam current passing through the implanter, desired ion beam current, and aperture position.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: March 27, 2001
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward K. McIntyre, Donald E. DeLuca, Gerald L. Dionne, Paul A. Loomis, Hans J. Rutishauser, Donald N. Polner, Jun Lu
  • Patent number: 6137112
    Abstract: An ion implanter including a time of flight energy measurement apparatus for measuring and controlling the energy of an ion beam includes an ion source for generating the ion beam, an ion acceleration assembly for accelerating the beam resulting in the beam comprising a series of ion pulses having a predetermined frequency and beam forming and directing structure for directing the ion beam at workpieces supported in an implantation chamber of the implanter. The time of flight energy measurement apparatus includes spaced apart first and second sensors, timing circuitry and conversion circuitry. The time of flight energy measurement apparatus measures an average kinetic energy of an ion included in a selected ion pulse of the ion beam. The first sensor and a second sensor are disposed adjacent the ion beam and spaced a predetermined distance apart, the second sensor being downstream of the first sensor.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: October 24, 2000
    Assignee: Eaton Corporation
    Inventors: Edward K. McIntyre, Kevin W. Wenzel, David R. Swenson, Ernst F. Scherer, William F. Divergilio, Kourosh Saadatmand
  • Patent number: 5497006
    Abstract: An ion source embodying the present invention is for use in an ion implanter. The ion source comprises a gas confinement chamber having conductive chamber walls that bound a gas ionization zone. The gas confinement chamber includes an exit opening to allow ions to exit the chamber. A base positions the gas confinement chamber relative to structure for forming an ion beam from ions exiting the gas confinement chamber. A gas supply is in communication with the gas confinement chamber for conducting an ionizable gas into the gas confinement chamber. A cathode is supported by the base and positioned with respect to said gas confinement chamber to emit ionizing electrons into the gas ionization zone. The cathode comprises a tubular conductive body that partially extends into the gas confinement chamber and includes a conductive cap that faces into the gas confinement chamber for emitting ionizing electrons into the gas confinement chamber.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: March 5, 1996
    Assignee: Eaton Corporation
    Inventors: Piero Sferlazzo, Edward K. McIntyre, Jr., William E. Reynolds, Richard M. Cloutier, Thomas N. Horsky
  • Patent number: 5218210
    Abstract: An ion beam source. The source includes multiple apertures bounded in close proximity by an extraction electrode for extracting positively charged ions from the source. Ions exiting the source combine downstream to form a broad beam which, in one utilization of the invention, is used for ion beam treatment of a silicon wafer. Individual electrodes in close proximity to the extraction electrode can be biased to either inhibit or allow backstreaming of neutralizing electrons from beam portions close to the source back to the extraction electrode. This allows the beam portion to become deneutralized and, therefore, unstable. The unstable beam is diminished in intensity since positively charged ions within that beam portion exit the beam. An isolation plate separates beam portions in close proximity to the extraction electrode to inhibit beam crosstalk and an additional suppression electrode common to all beam portions is controllably biased to further enhance control over beam portion intensity.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: June 8, 1993
    Assignee: Eaton Corporation
    Inventors: Edward K. McIntyre, Jr., Victor M. Benveniste, Walter Hrynyk
  • Patent number: 5023458
    Abstract: An ion implantation source used in an ion implantation system. The source produces multiple beam portions which combine to form a large diameter beam of the size of a workpiece. By controlling beam neutralization of the individual beam portions the ion density as a function of position within the cross-section of the beam can be controlled.
    Type: Grant
    Filed: March 1, 1990
    Date of Patent: June 11, 1991
    Assignee: Eaton Corporation
    Inventors: Victor M. Benveniste, Edward K. McIntyre, Jr.