Patents by Inventor Edward K. Summers

Edward K. Summers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9718709
    Abstract: Portions of a feed liquid are passed through respective condensers and liquid-liquid heat exchangers. The feed liquid is then heated and injected into a first feed-liquid containment chamber, where vapor from the feed is passed through a first gas-permeable membrane and directed into a first condenser, where the vapor is cooled by the feed liquid passing through the first condenser and condenses as it cools to produce a first liquid permeate. The first liquid permeate is passed through the first liquid-liquid heat exchanger where the first liquid permeate is cooled by the feed liquid passing therethrough. After the vapor is removed from the feed liquid in the first feed-liquid containment chamber, the remaining feed liquid from the first feed-liquid containment chamber is injected into a second feed-liquid containment chamber, where the process is repeated.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 1, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward K. Summers, John H. Lienhard, V
  • Publication number: 20150266157
    Abstract: A system for post-print processing of 3D printed parts includes an automated breakout system for separating 3D printed parts from printing media in a tray and a vibratory media cleaning system for removing printing media from the 3D printed parts. The automated breakout system includes a tray input mechanism, a bed including a first end disposed adjacent the tray input mechanism, the bed including one or more passageways configured to pass printing media through the bed, a vibration generator coupled to the bed and configured to vibrate the bed, and a part terminator disposed adjacent a second end of the bed. The vibratory media cleaning system include a vibratory bin, a vibration generator coupled to the vibratory bin and configured to vibrate the vibratory bin, an automated parts loader configured to introduce 3D printed parts to be cleaned into the bin, and an automated parts removal mechanism.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 24, 2015
    Applicant: SHAPEWAYS, INC.
    Inventors: Edward K. Summers, Jelmer Johan Siekmans, Raheel Valiani, Hugo Ploegmakers
  • Publication number: 20150266158
    Abstract: A system for post-print processing of 3D printed parts includes an automated breakout system for separating 3D printed parts from printing media in a tray and a vibratory media cleaning system for removing printing media from the 3D printed parts. The automated breakout system includes a tray input mechanism, a bed including a first end disposed adjacent the tray input mechanism, the bed including one or more passageways configured to pass printing media through the bed, a vibration generator coupled to the bed and configured to vibrate the bed, and a part terminator disposed adjacent a second end of the bed. The vibratory media cleaning system include a vibratory bin, a vibration generator coupled to the vibratory bin and configured to vibrate the vibratory bin, an automated parts loader configured to introduce 3D printed parts to be cleaned into the bin, and an automated parts removal mechanism.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 24, 2015
    Applicant: SHAPEWAYS, INC.
    Inventors: Edward K. Summers, Justin Wolfgang, Jelmer Johan Siekmans, Raheel Valiani, Hugo Ploegmakers
  • Publication number: 20140263060
    Abstract: Portions of a feed liquid are passed through respective condensers and liquid-liquid heat exchangers. The feed liquid is then heated and injected into a first feed-liquid containment chamber, where vapor from the feed is passed through a first gas-permeable membrane and directed into a first condenser, where the vapor is cooled by the feed liquid passing through the first condenser and condenses as it cools to produce a first liquid permeate. The first liquid permeate is passed through the first liquid-liquid heat exchanger where the first liquid permeate is cooled by the feed liquid passing therethrough. After the vapor is removed from the feed liquid in the first feed-liquid containment chamber, the remaining feed liquid from the first feed-liquid containment chamber is injected into a second feed-liquid containment chamber, where the process is repeated.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Massachustts Institute of Technology
    Inventors: Edward K. Summers, John H. Lienhard, V