Patents by Inventor Edward O. Travis

Edward O. Travis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10014257
    Abstract: An integrated circuit device includes a first line in a first metal layer of the integrated circuit device, wherein the first line forms at least a portion of an interconnect, a second line in a second metal layer of the integrated circuit device, and a first via that couples the first line to the second line. The integrated circuit device further includes a first stressor disposed at a first area of the interconnect, wherein the first area at least partially overlaps the first via, wherein the first stressor alters an electromigration stress profile for the interconnect by altering a stress at the first area to be less tensile.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 3, 2018
    Assignee: NXP USA, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9685405
    Abstract: A semiconductor structure comprising a fuse/resistor structure over a functional layer having a substrate. The fuse/resistor structure includes a via, a first interconnect layer, and a second interconnect layer. The via is over the functional layer and has a first end and a second end vertically opposite the first end, wherein the first end is bounded by a first edge and a second edge opposite the first edge and the second end is bounded by a third edge and a fourth edge opposite the third edge. The first interconnect layer includes a first metal layer running horizontally and contacting the first end and completely extending from the first edge to the second edge. The second interconnect layer includes a second metal layer running horizontally and contacting the second end of the via and extending past the third edge but reaching less than half way to the fourth edge.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: June 20, 2017
    Assignee: NXP USA, INC.
    Inventors: Mehul D. Shroff, Douglas M. Reber, Edward O. Travis
  • Patent number: 9652577
    Abstract: This disclosure describes an approach to create a library of pre-marked circuit element objects and use the pre-marked circuit element object library to design and fabricate an integrated circuit. Each of the circuit element objects are “pre-marked” and include embedded voltage markers having independent pre-assigned voltage values for each terminal in the circuit element object. When a circuit designer inserts a pre-marked circuit element object in a schematic design, the design tool determines whether each of the circuit element object terminal's pre-assigned voltage values match their corresponding nets to which they are connected. When the circuit designer completes the schematic design that includes valid nets throughout the schematic design, the design tool generates a layout design from the schematic design. The design tool, in turn, generates mask layer data from the layout design when the layout design passes verification testing.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: May 16, 2017
    Assignee: NXP USA, Inc.
    Inventors: Edward O. Travis, Ertugrul Demircan, Douglas M. Reber, Michael A. Stockinger
  • Publication number: 20170069572
    Abstract: An integrated circuit device includes a first line in a first metal layer of the integrated circuit device, wherein the first line forms at least a portion of an interconnect, a second line in a second metal layer of the integrated circuit device, and a first via that couples the first line to the second line. The integrated circuit device further includes a first stressor disposed at a first area of the interconnect, wherein the first area at least partially overlaps the first via, wherein the first stressor alters an electromigration stress profile for the interconnect by altering a stress at the first area to be less tensile.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 9, 2017
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9515006
    Abstract: A method for 3D device packaging utilizes through-hole metal post techniques to mechanically and electrically bond two or more dice. The first die includes a set of through-holes extending from a first surface of the first die to a second surface of the first die. The second die includes a third surface and a set of metal posts. The first die and the second die are stacked such that the third surface of the second die faces the second surface of the first die, and each metal post extends through a corresponding through-hole to a point beyond the first surface of the first die, electrically coupling the first die and the second die.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: December 6, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9508702
    Abstract: A method for 3D device packaging utilizes through-substrate metal posts to mechanically and electrically bond two or more dice. The first die includes a set of access holes extending from a surface of the first die to a set of pads at a metal layer of the first die. The second die includes a set of metal posts. The first die and the second die are stacked such that each metal post extends from a surface of the second die toward a corresponding pad via a corresponding access hole. The first die and second die are mechanically and electrically bonded via solder joints formed between the metal posts and the corresponding pads.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: November 29, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9508701
    Abstract: A method for 3D device packaging utilizes through-substrate pillars to mechanically and electrically bond two or more dice. The first die includes a set of access holes extending from a surface of the first die to a set of pads at a metal layer of the first die. The second die includes a set of metal pillars. The first die and the second die are stacked such that each metal pillar extends from a surface of the second die to a corresponding pad via a corresponding access hole. The first die and second die are mechanically and electrically bonded via solder joints formed between the metal pillars and the corresponding pads.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 29, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9455220
    Abstract: A method for selecting locations within an integrated circuit device for placing stressors to manage electromigration failures includes calculating an electric current for an interconnect within the integrated circuit device and determining an electromigration stress profile for the interconnect based on the electric current. The method further includes determining an area on the interconnect for placing a stressor to alter the electromigration stress profile for the interconnect.
    Type: Grant
    Filed: May 31, 2014
    Date of Patent: September 27, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Douglas M Reber, Edward O. Travis
  • Patent number: 9445050
    Abstract: A teleconferencing environment is provided in which both audio and visual cues are used to identify active participants and presenters. Embodiments provide an artificial environment, configurable by each participant in a teleconference, that directs the attention of a user to an identifier of an active participant or presenter. This direction is provided, in part, by stereo-enhanced audio that is associated with a position of a visual identifier of an active participant or presenter that has been placed on a window of a computer screen. The direction is also provided, in part, by promotion and demotion of attendees between attendee, active participant, and current presenter and automatic placement of an image related to an attendee on the screen in response to such promotion and demotion.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: September 13, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edward O. Travis, Douglas M. Reber
  • Patent number: 9443804
    Abstract: A semiconductor device includes a substrate, a dielectric layer supported by the substrate, an interconnect adjacent the dielectric layer, the interconnect including a conduction material and a barrier material disposed along sidewalls of the interconnect between the conduction material and the dielectric layer, and a layer disposed over the interconnect to establish an interface between the conduction material, the barrier material, and the layer. A plate is disposed along a section of the interconnect to interrupt the interface.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: September 13, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Mehul D. Shroff, Douglas M. Reber, Edward O. Travis
  • Publication number: 20160142674
    Abstract: A teleconferencing environment is provided in which both audio and visual cues are used to identify active participants and presenters. Embodiments provide an artificial environment, configurable by each participant in a teleconference, that directs the attention of a user to an identifier of an active participant or presenter. This direction is provided, in part, by stereo-enhanced audio that is associated with a position of a visual identifier of an active participant or presenter that has been placed on a window of a computer screen. The direction is also provided, in part, by promotion and demotion of attendees between attendee, active participant, and current presenter and automatic placement of an image related to an attendee on the screen in response to such promotion and demotion.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 19, 2016
    Inventors: Edward O. TRAVIS, Douglas M. REBER
  • Patent number: 9318409
    Abstract: A device comprising a first detector, comprising an output, disposed at a first location of an integrated circuit chip and configured to determine a first temperature information, a chip heater, comprising an input to receive a control signal, disposed at a second location of the integrated circuit and configured to heat an area of the integrated circuit device that includes the first location and the second location, based upon the control signal, and a heater controller comprising a first input coupled to the output of the first detector to receive the first temperature information, and an output coupled to the input of the chip heater, the heater controller configured to generate the control signal based upon the first temperature information.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 19, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Publication number: 20160098510
    Abstract: This disclosure describes an approach to create a library of pre-marked circuit element objects and use the pre-marked circuit element object library to design and fabricate an integrated circuit. Each of the circuit element objects are “pre-marked” and include embedded voltage markers having independent pre-assigned voltage values for each terminal in the circuit element object. When a circuit designer inserts a pre-marked circuit element object in a schematic design, the design tool determines whether each of the circuit element object terminal's pre-assigned voltage values match their corresponding nets to which they are connected. When the circuit designer completes the schematic design that includes valid nets throughout the schematic design, the design tool generates a layout design from the schematic design. The design tool, in turn, generates mask layer data from the layout design when the layout design passes verification testing.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Inventors: Edward O. Travis, Ertugrul Demircan, Douglas M. Reber, Michael A. Stockinger
  • Publication number: 20160093549
    Abstract: A device comprising a first detector, comprising an output, disposed at a first location of an integrated circuit chip and configured to determine a first temperature information, a chip heater, comprising an input to receive a control signal, disposed at a second location of the integrated circuit and configured to heat an area of the integrated circuit device that includes the first location and the second location, based upon the control signal, and a heater controller comprising a first input coupled to the output of the first detector to receive the first temperature information, and an output coupled to the input of the chip heater, the heater controller configured to generate the control signal based upon the first temperature information.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 31, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Patent number: 9245817
    Abstract: A semiconductor device includes a semiconductor substrate and a plurality of clock drivers, wherein the plurality of clock drivers comprises substantially all clock drivers of the semiconductor device, and an interconnect region over the semiconductor substrate, wherein the interconnect region comprises a plurality of heat spreaders, wherein at least 25% of the plurality of clock drivers have a corresponding heat spreader of the plurality of heat spreaders. Each corresponding heat spreader of the plurality of heat spreaders covers at least 50% of a transistor within a corresponding clock driver of the plurality of clock drivers and extends across at least 70% of a perimeter of the transistor within the corresponding clock driver.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: January 26, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Edward O. Travis, Douglas M. Reber, Mehul D. Shroff
  • Patent number: 9236344
    Abstract: A back-end-of-line thin ion beam deposited fuse (204) is deposited without etching to connect first and second last metal interconnect structures (110, 120) formed with last metal layers (LM) in a planar multi-layer interconnect stack to programmably connect separate first and second circuit connected to the first and second last metal interconnect structures.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: January 12, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Publication number: 20150348898
    Abstract: A method for selecting locations within an integrated circuit device for placing stressors to manage electromigration failures includes calculating an electric current for an interconnect within the integrated circuit device and determining an electromigration stress profile for the interconnect based on the electric current. The method further includes determining an area on the interconnect for placing a stressor to alter the electromigration stress profile for the interconnect.
    Type: Application
    Filed: May 31, 2014
    Publication date: December 3, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Mehul D. Shroff, Douglas M. Reber, Edward O. Travis
  • Patent number: 9142507
    Abstract: An integrated circuit (IC) device includes a plurality of metal layers having metal traces, and a plurality of vias interconnecting the metal traces. The presence of vacancies within the metal layers may disrupt the functionality of the IC device if the vacancies migrate to the vias interconnecting the metal layers. To mitigate vacancy migration, stressor elements are formed at the metal traces to form stress effects in the metal traces that, depending on type, either serve to repel migrating vacancies from the via contact area or to trap migrating vacancies at a portion of the metal trace displaced from the contact area. The stressor elements may be formed as stress-inducing dielectric or conductive material overlying the metal traces, or formed by inducing a stress memory effect in a portion of the metal trace itself.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: September 22, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Douglas M. Reber, Edward O. Travis
  • Publication number: 20150249048
    Abstract: An integrated circuit (IC) device includes a plurality of metal layers having metal traces, and a plurality of vias interconnecting the metal traces. The presence of vacancies within the metal layers may disrupt the functionality of the IC device if the vacancies migrate to the vias interconnecting the metal layers. To mitigate vacancy migration, stressor elements are formed at the metal traces to form stress effects in the metal traces that, depending on type, either serve to repel migrating vacancies from the via contact area or to trap migrating vacancies at a portion of the metal trace displaced from the contact area. The stressor elements may be formed as stress-inducing dielectric or conductive material overlying the metal traces, or formed by inducing a stress memory effect in a portion of the metal trace itself.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Douglas M. Reber, Edward O. Travis
  • Patent number: 9122812
    Abstract: A semiconductor device comprises conductive buses and conductive bridges. A respective conductive bridge is conductively coupled to at least two portions of at least one of the conductive buses. At least N plus one (N+1) vias are coupled between every one of the conductive bridges and a respective feature in an integrated circuit when: (1) a width of the respective conductive bridge is less than a width of each of the at least two portions of the at least one of the conductive buses to which the respective conductive bridge is coupled, and (2) a distance along the respective conductive bridge and at least one of the vias is less than a critical distance. N is a number of conductive couplings between the respective one of the conductive bridges and the at least one of the conductive buses.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: September 1, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis