Patents by Inventor Edward R. Dowski, Jr.

Edward R. Dowski, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7944467
    Abstract: A task-based imaging system for obtaining data regarding a scene for use in a task includes an image data capturing arrangement for (a) imaging a wavefront of electromagnetic energy from the scene to an intermediate image over a range of spatial frequencies, (b) modifying phase of the wavefront, (c) detecting the intermediate image, and (d) generating image data over the range of spatial frequencies. The task-based imaging system also includes an image data processing arrangement for processing the image data and performing the task. The image data capturing and image data processing arrangements cooperate so that signal-to-noise ratio (SNR) of the task-based imaging system is greater than SNR of the task-based imaging system without phase modification of the wavefront over the range of spatial frequencies.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 17, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Paulo E. X. Silveira, Ramkumar Narayanswamy, Robert H. Cormack, Gregory E. Johnson, Edward R. Dowski, Jr.
  • Publication number: 20110085050
    Abstract: An imaging system includes optics foi foiming an optical image, that provide a first region m the optical image that is charactenzed by a fust range of best focus and a second region in the optical image that is characterized by a second range of best focus The first and second ianges correspond to object distance ranges that are discontiguous A sensor array converts the optical image to a data stream, and a digital signal processor processes the data stream to generate a final image.
    Type: Application
    Filed: August 4, 2008
    Publication date: April 14, 2011
    Applicant: OMNIVISION CDM OPTICS, INC.
    Inventors: Edward R. Dowski, JR., Kenneth S. Kubala, Inga Tamayo, Dennis W. Dobbs, Satoru Tachihara, Edwin Penniman
  • Patent number: 7911501
    Abstract: Systems and methods include optics having one or more phase modifying elements that modify wavefront phase to introduce image attributes into an optical image. A detector converts the optical image to electronic data while maintaining the image attributes. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets, and independently processes the data sets to form processed electronic data. The processing may optionally be nonlinear. Other imaging systems and methods include optics having one or more phase modifying elements that modify wavefront phase to form an optical image. A detector generates electronic data having one or more image attributes that are dependent on characteristics of the phase modifying elements and/or the detector. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets and independently processes the data sets to form processed electronic data.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: March 22, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gregory E. Johnson, Edward R. Dowski, Jr., Kenneth S. Kubala, Ramkumar Narayanswamy, Hans Brandon Wach
  • Patent number: 7860699
    Abstract: A software product includes instructions stored on computer-readable media, that when executed by a computer, perform steps for optimizing an optical system design and a digital system design. The instructions are for simulating an optical model of the optical system design, simulating a digital model of the digital system design, analyzing simulated output of the optical model and simulated output of the digital model, to produce a score, modifying the optical model and the digital model, based upon the score, controlling re-execution of the instructions for simulating the optical model, the instructions for simulating the digital model, the instructions for analyzing and the instructions for modifying to produce an optimized optical model and an optimized digital model, and outputting predicted performance of the optimized optical and digital models.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 28, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Gregory E. Johnson, Kenneth S. Kubala, Kenneth Ashley Macon, Goran M. Rauker
  • Publication number: 20100278390
    Abstract: A task-based imaging system for obtaining data regarding a scene for use in a task includes an image data capturing arrangement for (a) imaging a wavefront of electromagnetic energy from the scene to an intermediate image over a range of spatial frequencies, (b) modifying phase of the wavefront, (c) detecting the intermediate image, and (d) generating image data over the range of spatial frequencies. The task-based imaging system also includes an image data processing arrangement for processing the image data and performing the task. The image data capturing and image data processing arrangements cooperate so that signal-to-noise ratio (SNR) of the task-based imaging system is greater than SNR of the task-based imaging system without phase modification of the wavefront over the range of spatial frequencies.
    Type: Application
    Filed: September 19, 2006
    Publication date: November 4, 2010
    Inventors: Paulo E.X. Silveira, Ramkumar Narayanswamy, Robert H. Cormack, Gregory E. Johnson, Edward R. Dowski, JR.
  • Publication number: 20100272327
    Abstract: A method for generating an output image of a scene is disclosed. A detector of a task-based imaging system includes a plurality of pixels, and the scene includes at least one object located at a given object distance within a range of object distances between the object and the imaging system. The method includes capturing a high resolution image of the scene, converting the high resolution image into an image spectrum of the scene, determining a defocused optical transfer function (OTF) of the imaging system over the range of object distances and determining a pixel modulation transfer function (MTF) over the plurality of pixels. The method also includes multiplying the image spectrum with the OTF and the MTF to generate a modified image spectrum of the scene, converting the modified image spectrum into a modified image of the scene, and generating the output image from the modified image.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Inventors: Paulo E.X. Silveira, Ramkumar Narayanswamy, Robert H. Cormack, Gregory E. Johnson, Edward R. Dowski, JR.
  • Publication number: 20100165134
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Application
    Filed: April 17, 2007
    Publication date: July 1, 2010
    Inventors: Edward R. Dowski, JR., Paulo E.X. Silveira, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Mondrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Commack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen
  • Publication number: 20100165136
    Abstract: Systems and methods include optics having one or more phase modifying elements that modify wavefront phase to introduce image attributes into an optical image. A detector converts the optical image to electronic data while maintaining the image attributes. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets, and independently processes the data sets to form processed electronic data. The processing may optionally be nonlinear. Other imaging systems and methods include optics having one or more phase modifying elements that modify wavefront phase to form an optical image. A detector generates electronic data having one or more image attributes that are dependent on characteristics of the phase modifying elements and/or the detector. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets and independently processes the data sets to form processed electronic data.
    Type: Application
    Filed: April 3, 2007
    Publication date: July 1, 2010
    Inventors: Gregory E. Johnson, Edward R. Dowski, JR., Kenneth S. Kubala, Ramakumar Narayanswamy, Hans Brandon Wach
  • Publication number: 20100012866
    Abstract: An imaging system includes a detector for receiving electromagnetic energy and generating sampled data in accordance with the electromagnetic energy so received. The detector is characterized by a threshold point such that the sampled data is in one of two states: i) below threshold, when the intensity of the electromagnetic energy so received is less than the threshold point; and ii) above threshold, when the intensity of the electromagnetic energy is greater than the threshold point. The imaging system also includes saturation optics for providing a characteristic of the sampled data, wherein the characteristic of the sampled data when below threshold is different from the characteristic of the sampled data when above threshold.
    Type: Application
    Filed: May 23, 2007
    Publication date: January 21, 2010
    Inventors: Regis S. Fan, Edward R. Dowski, JR., Kenneth S. Kubala
  • Patent number: 7583442
    Abstract: An imaging system is characterized at least by an ambiguity function (“AF”) and a point spread function (“PSF”). The AF is a function of parameters u and v related to a misfocus parameter ?; the PSF is at least a function of ?. The system includes (1) an image recording device, (2) an optical arrangement for imaging an object to the image recording device, and (3) a post processor that renders an in-focus electronic image over a range of distances between the object and the optical arrangement. The optical arrangement alters phase such that a main lobe of the AF is broader in v for a specific u. The PSF has a functionally different form for a specific ?, in comparison to a PSF characterizing the system when the optical arrangement does not alter the phase for those specific values of u and ? over the range of distances.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: September 1, 2009
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Wade Thomas Cathey, Jr., Edward R. Dowski, Jr.
  • Publication number: 20090143874
    Abstract: A software product includes instructions stored on computer-readable media, that when executed by a computer, perform steps for optimizing an optical system design and a digital system design. The instructions are for simulating an optical model of the optical system design, simulating a digital model of the digital system design, analyzing simulated output of the optical model and simulated output of the digital model, to produce a score, modifying the optical model and the digital model, based upon the score, controlling re-execution of the instructions for simulating the optical model, the instructions for simulating the digital model, the instructions for analyzing and the instructions for modifying to produce an optimized optical model and an optimized digital model, and outputting predicted performance of the optimized optical and digital models.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 4, 2009
    Inventors: Edward R. Dowski, JR., Gregory E. Johnson, Kenneth S. Kubala, Kenneth Ashley Macon, Goran M. Rauker
  • Patent number: 7469202
    Abstract: A system, method and software product to optimize optical and/or digital system designs. An optical model of the optical system design is generated. A digital model of the digital system design is generated. Simulated output of the optical and digital models is analyzed to produce a score. The score is processed to determine whether the simulated output achieves one or more goals. One or more properties of at least one of the optical model and the digital model is modified if the goals are not achieved. The analyzing, processing and modifying is repeated until the goals are achieved, and an optimized optical system design and optimized digital system design are generated from the optical and digital models.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: December 23, 2008
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Edward R. Dowski, Jr., Gregory E. Johnson, Kenneth S. Kubala, Kenneth Ashley Macon, Goran M. Rauker
  • Patent number: 5521695
    Abstract: A range or distance estimating apparatus and method estimates the range to various points within a scene by imaging the scene through an optical mask and a lens onto a CCD, and then digitally processing the light intensity values stored in the CCD. The optical mask is designed such that the optical system transformation matrix is rank deficient for a particular set of object ranges. In this way, linear functions can be found to annihilate given sampled image data at a plurality of ranges, independent of the intensity of the light received from the object. A statistical detector is used to determine the closest associated range to the actual range of the point within the scene.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: May 28, 1996
    Assignee: The Regents of the University of Colorado
    Inventors: Wade T. Cathey, Jr., Edward R. Dowski, Jr.
  • Patent number: 5227890
    Abstract: The invention provides an apparatus for focusing an object through a lens on an image plane. The apparatus comprises a Z-transformation circuit for receiving a plurality of image data and for generating a Z-transformation polynomial in a given form by subjecting the plurality of image data to Z-transformation; a memory for storing a set of different focus-error distances each assigned a zero which is a value making a Z-transformation polynomial of a corresponding focus-error distance a zero point; calculation circuit for inputting the assigned zero of each of the different focus-error distances into the generated Z-transformation polynomial to select an optimum focus-error distance; and control circuit for moving the lens on the basis of the optimum focus-error distance.
    Type: Grant
    Filed: October 31, 1991
    Date of Patent: July 13, 1993
    Assignee: Konica Corporation
    Inventor: Edward R. Dowski, Jr.