Patents by Inventor Edward Sachet

Edward Sachet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221242
    Abstract: Devices and methods for non-dispersive infrared (NDIR) sensing are disclosed. In one aspect, a non-dispersive infrared sensor is disclosed which, in one embodiment includes a nanophotonic infrared emitting metamaterial (NIREM) emitter configured to selectively emit radiation corresponding to a respective vibrational resonance frequency for each of a plurality of different analytes of interest. The broadband detector can be configured to detect photons associated with vibrational resonance of each of the plurality of analytes of interest in response to the emitted radiation from the NIREM emitter, in order to determine properties of one or more of the analytes of interest.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Inventors: Joshua D. Caldwell, Edward Sachet, Christopher Shelton, Thomas G. Folland
  • Publication number: 20210405256
    Abstract: A device includes a substrate having a pattern of surface features on a surface thereof, and a layer including a material having an Epsilon-Near-Zero (ENZ) condition for a wavelength range. The layer extends on the surface of the substrate and along the pattern of surface features. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 30, 2021
    Inventors: Edward Sachet, Christopher Shelton
  • Patent number: 10741649
    Abstract: A method of forming a metal oxide includes providing a reactive deposition atmosphere having an oxygen concentration of greater than about 20 percent in a chamber including a substrate therein. A pulsed DC signal is applied to a sputtering target comprising a metal, to sputter metal particles therefrom. A doping element may be supplied from a doping source (such as an alloyed metal target) in the reaction chamber. An electrically conductive metal oxide film comprising an oxide of the metal is deposited on the substrate responsive to a reaction between the metal particles and the reactive deposition atmosphere. Related devices are also discussed.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 11, 2020
    Assignee: NORTH CAROLINA STATE UNIVERSITY
    Inventors: Edward Sachet, Christopher Shelton, Jon-Paul Maria, Kyle Patrick Kelley, Evan Lars Runnerstrom
  • Patent number: 10468548
    Abstract: A detector that includes an all-oxide, Schottky-type heterojunction. The “metal” side of the heterojunction is formed, for example, from a dysprosium (“Dy”) doped cadmium oxide (“CdO”) (i.e., CdO:Dy). The semiconductor side of the heterojunction is formed, for example, from cadmium magnesium oxide (“CdMgO”). On the metal side of the junction, “hot” electrons are created through the excitation of surface plasmon polaritons by infrared radiation. The hot electrons are able to cross the Schottky-type barrier of the heterojunction into the conduction band of the semiconductor where they can be detected. The working wavelength of infrared radiation that is being detected can be adjusted or tuned by modifying the Dy content of Dy-doped CdO. The height of the Schottky-type barrier can also be adjusted by modifying the composition of CdMgO, which allows for the optimization of the Schottky-type barrier height for a given working wavelength.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: November 5, 2019
    Assignee: North Carolina State University
    Inventors: Edward Sachet, Jon-Paul Maria
  • Patent number: 10158040
    Abstract: Polaritonic hot electron infrared photodetector that detect infrared radiation. In one implementation, the polaritonic hot electron infrared photodetector includes a first contact layer, a second contact layer, a first dielectric layer, a second dielectric layer, and a conductor layer. The first dielectric layer is coupled between the first contact layer and the second contact layer. The second dielectric layer is coupled between the first dielectric layer and the second contact layer. The conductor layer is coupled between the first dielectric layer and the second dielectric layer. Infrared radiation incident upon the conductor layer is operable to create hot carriers that are injected from a conduction band of the conductor layer to a conduction band of the second contact layer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: December 18, 2018
    Assignee: North Carolina State University
    Inventors: Edward Sachet, Jon-Paul Maria, Christopher Shelton
  • Publication number: 20180350922
    Abstract: A method of forming a metal oxide includes providing a reactive deposition atmosphere having an oxygen concentration of greater than about 20 percent in a chamber including a substrate therein. A pulsed DC signal is applied to a sputtering target comprising a metal, to sputter metal particles therefrom. A doping element may be supplied from a doping source (such as an alloyed metal target) in the reaction chamber. An electrically conductive metal oxide film comprising an oxide of the metal is deposited on the substrate responsive to a reaction between the metal particles and the reactive deposition atmosphere. Related devices are also discussed.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 6, 2018
    Inventors: Edward Sachet, Christopher Shelton, Jon-Paul Maria, Kyle Patrick Kelley, Evan Lars Runnerstrom
  • Publication number: 20180013031
    Abstract: Polaritonic hot electron infrared photodetector that detect infrared radiation. In one implementation, the polaritonic hot electron infrared photodetector includes a first contact layer, a second contact layer, a first dielectric layer, a second dielectric layer, and a conductor layer. The first dielectric layer is coupled between the first contact layer and the second contact layer. The second dielectric layer is coupled between the first dielectric layer and the second contact layer. The conductor layer is coupled between the first dielectric layer and the second dielectric layer. Infrared radiation incident upon the conductor layer is operable to create hot carriers that are injected from a conduction band of the conductor layer to a conduction band of the second contact layer.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Edward Sachet, Jon-Paul Maria, Christopher Shelton
  • Publication number: 20160322530
    Abstract: A detector that includes an all-oxide, Schottky-type heterojunction. The “metal” side of the heterojunction is formed, for example, from a dysprosium (“Dy”) doped cadmium oxide (“CdO”) (i.e., CdO:Dy). The semiconductor side of the heterojunction is formed, for example, from cadmium magnesium oxide (“CdMgO”). On the metal side of the junction, “hot” electrons are created through the excitation of surface plasmon polaritons by infrared radiation. The hot electrons are able to cross the Schottky-type barrier of the heterojunction into the conduction band of the semiconductor where they can be detected. The working wavelength of infrared radiation that is being detected can be adjusted or tuned by modifying the Dy content of Dy-doped CdO. The height of the Schottky-type barrier can also be adjusted by modifying the composition of CdMgO, which allows for the optimization of the Schottky-type barrier height for a given working wavelength.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Edward Sachet, Jon-Paul Maria