Patents by Inventor Efthymios Papageorgiou

Efthymios Papageorgiou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867660
    Abstract: Device and methods for controlling pH or ionic gradient comprising a multisite array of feedback electrode sets comprising electrodes and pH sensing elements. The electrodes can include a reference electrode, counter electrode, and a working electrode. The device and methods iteratively select an amount of current and/or voltage to be applied to each working electrode, apply the selected amount of current and/or voltage to each working electrode to change pH of a solution close to the working electrode, and measure the signal output of the sensing element. The multisite array can include feedback and non-feedback electrode sets.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 9, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan, Young Shik Shin, Armin Darvish, Efthymios Papageorgiou
  • Patent number: 11847560
    Abstract: A dynamic equilibrium (DEQ) model circuit includes a first multiplier configured to receive an input, scale the input by a first weight, and output the scaled input, second multiplier configured to receive a root, scale the root by a second weight, and output the scaled root, a summation block configured to combine the scaled input, a bias input, and the scaled root and output a non-linear input, and a first non-linear function configured to receive the non-linear input and output the root, wherein the first weight and second weight are based on a trained DEQ model of a neural network.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: December 19, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Jeremy Kolter, Kenneth Wojciechowski, Efthymios Papageorgiou, Sayyed Mahdi Kashmiri
  • Patent number: 11592420
    Abstract: Closed-loop systems and methods for controlling pH. The system includes a working electrode, a counter electrode, a reference electrode, a first ion-sensitive field-effect transistor (ISFET), a second ISFET, and an electronic controller. The working electrode, the counter electrode, the reference electrode, and a first sensing terminal of the first ISFET are immersible in an active solution. A second sensing terminal of the second ISFET is immersible in a reference solution. The electronic controller is configured to apply a first amount of current or voltage to the working electrode and determine a differential voltage between the first ISFET and the second ISFET. The electronic controller is also configured to set a second amount of current or voltage to reduce a difference between the differential voltage and a target voltage. The electronic controller is further configured to apply the second amount of current or voltage to the working electrode.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: February 28, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Young Shik Shin, Nadezda Fomina, Christopher Johnson, Armin Darvish, Efthymios Papageorgiou, Christoph Lang
  • Patent number: 11404106
    Abstract: A read-only memory (ROM) computing unit utilized in matrix operations of a neural network comprising a unit element including one or more connections, wherein a weight associated with the computing unit is responsive to either a connection or lack of connection internal to the unit cell or between the unit element and a wordline and a bitline utilized to form an array of rows and columns in the ROM computing unit, and one or more passive or active electrical elements located in the unit element, wherein the passive or active electrical elements are configured to adjust the weight associated with the compute unit, wherein the ROM computing unit is configured to receive an input and output a value associated with the matrix operation, wherein the value is responsive to the input and weight.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 2, 2022
    Inventors: Efthymios Papageorgiou, Kenneth Wojciechowski, Sayyed Mahdi Kashmiri
  • Publication number: 20220027130
    Abstract: A circuit configured to compute matrix multiply-and-add calculations that includes a digital-to-time converter configured to receive a digital input and output a signal proportional to the digital input and modulated in time-domain associated with a reference time, a memory including a crossbar network, wherein the memory is configured to receive the time modulated signal from the digital-to-time converter and output a weighted signal scaled in response to network weights of the crossbar network and the time modulated input signal, and an output interface in communication with the crossbar network and configured to receive its weighted output signal and output a digital value proportional to at least the reference time using a time-to-digital converter.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 27, 2022
    Inventors: Sayyed Mahdi KASHMIRI, Kenneth WOJCIECHOWSKI, Jonas MESSNER, Efthymios PAPAGEORGIOU
  • Publication number: 20220028444
    Abstract: A read-only memory (ROM) computing unit utilized in matrix operations of a neural network comprising a unit element including one or more connections, wherein a weight associated with the computing unit is responsive to either a connection or lack of connection internal to the unit cell or between the unit element and a wordline and a bitline utilized to form an array of rows and columns in the ROM computing unit, and one or more passive or active electrical elements located in the unit element, wherein the passive or active electrical elements are configured to adjust the weight associated with the compute unit, wherein the ROM computing unit is configured to receive an input and output a value associated with the matrix operation, wherein the value is responsive to the input and weight.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 27, 2022
    Inventors: Efthymios PAPAGEORGIOU, Kenneth WOJCIECHOWSKI, Sayyed Mahdi KASHMIRI
  • Publication number: 20220027723
    Abstract: A dynamic equilibrium (DEQ) model circuit includes a first multiplier configured to receive an input, scale the input by a first weight, and output the scaled input, second multiplier configured to receive a root, scale the root by a second weight, and output the scaled root, a summation block configured to combine the scaled input, a bias input, and the scaled root and output a non-linear input, and a first non-linear function configured to receive the non-linear input and output the root, wherein the first weight and second weight are based on a trained DEQ model of a neural network.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 27, 2022
    Inventors: Jeremy KOLTER, Kenneth WOJCIECHOWSKI, Efthymios PAPAGEORGIOU, Sayyed Mahdi KASHMIRI
  • Publication number: 20220018806
    Abstract: Closed-loop systems and methods for controlling pH. The system includes a working electrode, a counter electrode, a reference electrode, a first ion-sensitive field-effect transistor (ISFET), a second ISFET, and an electronic controller. The working electrode, the counter electrode, the reference electrode, and a first sensing terminal of the first ISFET are immersible in an active solution. A second sensing terminal of the second ISFET is immersible in a reference solution. The electronic controller is configured to apply a first amount of current or voltage to the working electrode and determine a differential voltage between the first ISFET and the second ISFET. The electronic controller is also configured to set a second amount of current or voltage to reduce a difference between the differential voltage and a target voltage. The electronic controller is further configured to apply the second amount of current or voltage to the working electrode.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 20, 2022
    Inventors: Young Shik Shin, Nadezda Fomina, Christopher Johnson, Armin Darvish, Efthymios Papageorgiou, Christoph Lang
  • Publication number: 20200363371
    Abstract: Device and methods for controlling pH or ionic gradient comprising a multisite array of feedback electrode sets comprising electrodes and pH sensing elements. The electrodes can include a reference electrode, counter electrode, and a working electrode. The device and methods iteratively select an amount of current and/or voltage to be applied to each working electrode, apply the selected amount of current and/or voltage to each working electrode to change pH of a solution close to the working electrode, and measure the signal output of the sensing element. The multisite array can include feedback and non-feedback electrode sets.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 19, 2020
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan, Young Shik Shin, Armin Darvish, Efthymios Papageorgiou