Patents by Inventor Eiji Tanabe

Eiji Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10750607
    Abstract: A standing-wave linear accelerator structure has an electron gun; a first cavity axially adjacent to the electron gun, into which electrons are injected directly from the electrode gun; a pancake cavity disposed adjacent to the electron gun on a side of the first cavity opposite the electron gun; and a plurality of accelerating cavities including both on-axis cavities and side-coupled cavities, disposed serially after the at least one pancake cavity, to accelerate electrons injected from the electron gun through a central aperture formed in each of the on-axis cavities. The first cavity and the pancake cavity together form a buncher cavity. The accelerator structure omits the prebuncher and buncher cavities while retaining their functions.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 18, 2020
    Assignee: AET, INC.
    Inventor: Eiji Tanabe
  • Publication number: 20200187345
    Abstract: A standing-wave linear accelerator structure has an electron gun; a first cavity axially adjacent to the electron gun, into which electrons are injected directly from the electrode gun; a pancake cavity disposed adjacent to the electron gun on a side of the first cavity opposite the electron gun; and a plurality of accelerating cavities including both on-axis cavities and side-coupled cavities, disposed serially after the at least one pancake cavity, to accelerate electrons injected from the electron gun through a central aperture formed in each of the on-axis cavities. The first cavity and the pancake cavity together form a buncher cavity. The accelerator structure omits the prebuncher and buncher cavities while retaining their functions.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Applicant: AET, Inc.
    Inventor: Eiji Tanabe
  • Patent number: 9965976
    Abstract: A phantom for simulating motions of both the body surface and the internal organs simultaneously, having a structure comprising of a body cell 12 and an internal organ part cell 2. The body cell 12 simulates a body. The internal organ part cell 2 is installed inside a body cell 12 and contains internal organ cells 11a and 11b which simulate internal organs like lung and others. Each of the body cell 12, the internal organ part cell 2 and the internal organ cells 11a and 11b has elastic surface and is able to expand like a balloon. Each cell is provided with a protrusion 170 for connecting a tube 40 to pass fluid.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 8, 2018
    Assignee: ACCUTHERA INC.
    Inventors: Eiji Tanabe, Koichiro Sugahara
  • Publication number: 20160155365
    Abstract: A phantom for simulating motions of both the body surface and the internal organs simultaneously, having a structure comprising of a body cell 12 and an internal organ part cell 2. The body cell 12 simulates a body. The internal organ part cell 2 is installed inside a body cell 12 and contains internal organ cells 11a and 11b which simulate internal organs like lung and others. Each of the body cell 12, the internal organ part cell 2 and the internal organ cells 11a and 11b has elastic surface and is able to expand like a balloon. Each cell is provided with a protrusion 170 for connecting a tube 40 to pass fluid.
    Type: Application
    Filed: September 8, 2015
    Publication date: June 2, 2016
    Inventors: Eiji Tanabe, Koichiro Sugahara
  • Patent number: 9149656
    Abstract: A radiation therapy apparatus including a robot supporting a robot head; a therapeutic radiation source attached to the robot head; a collimator for adjusting a radiation field shape of therapeutic radiation radiated from the therapeutic radiation source; a first therapeutic radiation detector attached to the robot head; a couch configured to support a patient lying supine thereon; a second therapeutic radiation detector for detecting the therapeutic radiation, disposed opposite the first therapeutic radiation detector with the couch disposed therebetween; at least two X-ray sources and detectors for position detection of a marker and/or a treatment target; an image processor for reconstructing an image of the treatment target; and a CPU that computes the intensity, irradiation direction, dose, and dose distribution of the therapeutic radiation, and dose absorbed by the treatment target, radiation field shape, and position of the treatment target in real time for feedback to a next irradiation.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: October 6, 2015
    Assignee: Accuthera Inc.
    Inventor: Eiji Tanabe
  • Patent number: 8731142
    Abstract: An X-ray collimator for controlling an X-ray radiation field, having a lower base member, a pair of regulating members, a pair of surrounding members having substantially U-shaped forms in planar view, N columnar members surrounded by the pair of surrounding members (where N is 4, 6, or 8), a guiding member, a pair of moving members moving parallel to the opposed surfaces of the regulating members, an upper base member, a first motor for horizontally moving the pair of moving members, and a second motor for moving the columnar members. The first motor is driven to horizontally move the pair of moving members over the same distance in opposite directions. The second motor is configured to move one of the columnar members along an internal surface of the surrounding member surrounding the columnar member, thereby moving the other N?1 columnar members sequentially.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: May 20, 2014
    Assignee: Accuthera Inc.
    Inventors: Eiji Tanabe, Masaaki Ito
  • Publication number: 20130336449
    Abstract: A radiation therapy apparatus including a robot supporting a robot head; a therapeutic radiation source attached to the robot head; a collimator for adjusting a radiation field shape of therapeutic radiation radiated from the therapeutic radiation source; a first therapeutic radiation detector attached to the robot head; a couch configured to support a patient lying supine thereon; a second therapeutic radiation detector for detecting the therapeutic radiation, disposed opposite the first therapeutic radiation detector with the couch disposed therebetween; at least two X-ray sources and detectors for position detection of a marker and/or a treatment target; an image processor for reconstructing an image of the treatment target; and a CPU that computes the intensity, irradiation direction, dose, and dose distribution of the therapeutic radiation, and dose absorbed by the treatment target, radiation field shape, and position of the treatment target in real time for feedback to a next irradiation.
    Type: Application
    Filed: January 15, 2013
    Publication date: December 19, 2013
    Applicant: ACCUTHERA INC.
    Inventor: Eiji Tanabe
  • Publication number: 20130294583
    Abstract: An X-ray collimator for controlling an X-ray radiation field, having a lower base member, a pair of regulating members, a pair of surrounding members having substantially U-shaped forms in planar view, N columnar members surrounded by the pair of surrounding members (where N is 4, 6, or 8), a guiding member, a pair of moving members moving parallel to the opposed surfaces of the regulating members, an upper base member, a first motor for horizontally moving the pair of moving members, and a second motor for moving the columnar members. The first motor is driven to horizontally move the pair of moving members over the same distance in opposite directions. The second motor is configured to move one of the columnar members along an internal surface of the surrounding member surrounding the columnar member, thereby moving the other N?1 columnar members sequentially.
    Type: Application
    Filed: April 24, 2013
    Publication date: November 7, 2013
    Applicant: Accuthera Inc.
    Inventors: Eiji Tanabe, Masaaki Ito
  • Patent number: 8358737
    Abstract: An X-ray treatment apparatus comprises a low energy X-ray generator for detecting a marker, a marker sensor detecting a position of the marker fixed in the patient to a couch, and both low energy X-ray generator and the marker sensor are installed in the couch, a high energy X-ray generator for treatment, a X-ray sensor for treatment detecting the high energy X-ray for treatment. An X-ray treatment method using the X-ray treatment apparatus comprises the steps of detecting a position of a marker by the marker sensor, irradiating to a lesion the high energy X-ray for treatment, detecting the penetrated high energy X-ray for treatment by the X-ray sensor for treatment, modifying the beam profile, the dosage or/and the radiation direction of the X-ray for treatment according to the latest data of the sensors, performing the next radiation for the lesion.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: January 22, 2013
    Assignee: Accuthera Inc.
    Inventor: Eiji Tanabe
  • Patent number: 7856086
    Abstract: An electron beam corresponding to radiation intensity data is output from an electron source by supplying high energy pulses p-1 through p-n, which correspond to the radiation intensity data of a radiation field, to the electron source from a power source 108. This electron beam is deflected so as to be incident in parallel to the medial axis of a plurality of X-ray target tubes 104-1 through 104-n by a deflection means comprising electromagnets, such that X-ray beams x-1 through x-n, which are produced when the electron beam collides with an inner wall of an X-ray target tube are irradiated with a desired intensity.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 21, 2010
    Assignee: AET, Inc.
    Inventor: Eiji Tanabe
  • Publication number: 20100246767
    Abstract: An X-ray treatment apparatus comprises a low energy X-ray generator for detecting a marker, a marker sensor detecting a position of the marker fixed in the patient to a couch, and both low energy X-ray generator and the marker sensor are installed in the couch, a high energy X-ray generator for treatment, a X-ray sensor for treatment detecting the high energy X-ray for treatment. An X-ray treatment method using the X-ray treatment apparatus comprises the steps of detecting a position of a marker by the marker sensor, irradiating to a lesion the high energy X-ray for treatment, detecting the penetrated high energy X-ray for treatment by the X-ray sensor for treatment, modifying the beam profile, the dosage or/and the radiation direction of the X-ray for treatment according to the latest data of the sensors, performing the next radiation for the lesion.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Applicant: ACCUTHERA INC.
    Inventor: Eiji Tanabe
  • Patent number: 7619363
    Abstract: An energy switch for use in a radiation system includes an element located within a structure having a cavity, the element capable of being biased by a magnetic field, and a device for generating the magnetic field to thereby bias the element. An energy switch for use in a radiation system includes a structure forming at least a part of a cavity, an element coupled to the structure and located outside the cavity, the element capable of being biased by a magnetic field, and a device for generating the magnetic field to bias the element. A method for use in a radiation procedure includes providing a first magnetic field, and using the first magnetic field to create a first bias for an element that is located outside a cavity of an accelerator, thereby changing en electric field associated with the accelerator.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: November 17, 2009
    Assignee: Varian Medical Systems, Inc.
    Inventors: David H. Whittum, Eiji Tanabe
  • Publication number: 20090154650
    Abstract: The electron beam corresponding to radiation intensity data 112 is output from an electron source 103 by supplying high energy pulse p-1 through p-n corresponding to the radiation intensity data 112 of the radiation field to electron source 103 from power source 108. This electron beam is deflected to be incident in parallel to the medial axis of the X-ray target tube by a deflection means comprising electromagnets, X-ray beam x-1 through x-n which electron beam collides to the inner wall of X-ray target tube 104-1 through 104-n, and have desired intensity is irradiated.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 18, 2009
    Applicant: AET, INC.
    Inventor: Eiji TANABE
  • Publication number: 20070215813
    Abstract: An energy switch for use in a radiation system includes an element located within a structure having a cavity, the element capable of being biased by a magnetic field, and a device for generating the magnetic field to thereby bias the element. An energy switch for use in a radiation system includes a structure forming at least a part of a cavity, an element coupled to the structure and located outside the cavity, the element capable of being biased by a magnetic field, and a device for generating the magnetic field to bias the element. A method for use in a radiation procedure includes providing a first magnetic field, and using the first magnetic field to create a first bias for an element that is located outside a cavity of an accelerator, thereby changing en electric field associated with the accelerator.
    Type: Application
    Filed: March 17, 2006
    Publication date: September 20, 2007
    Inventors: David Whittum, Eiji Tanabe
  • Patent number: 6646382
    Abstract: A microminiature microwave electron source excited by a pulsed microwave power through a coaxial to emit electrons includes an electrically conductive chamber that is connected to an external conductor of the coaxial cable at an openings end thereof and has an opening anode in a bottom portion thereof, a central conductor adjacent to the electron source, the central conductor having one end thereof connected to a central conductor of the coaxial cable, a carbon nanotube cold cathode formed on the other end thereof being supported by the chamber such that the cold cathode opposes the anode, a coupling iris that airtightly and fixedly supports the central conductor at an opening end of the chamber, and a connecting device for electrically and mechanically connecting the opening end of the chamber to the central conductor of the coaxial cable so as to connect the central of the electron source to the central conductor of the coaxial cable.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: November 11, 2003
    Assignee: AET Japan, Inc.
    Inventor: Eiji Tanabe
  • Publication number: 20030052612
    Abstract: A microminiature microwave electron source excited by a pulsed microwave power through a coaxial to emit electrons includes an electrically conductive chamber that is connected to an external conductor of the coaxial cable at an openings end thereof and has an opening anode in a bottom portion thereof, a central conductor adjacent to the electron source, the central conductor having one end thereof connected to a central conductor of the coaxial cable, a carbon nanotube cold cathode formed on the other end thereof being supported by the chamber such that the cold cathode opposes the anode, a coupling iris that airtightly and fixedly supports the central conductor at an opening end of the chamber, and a connecting device for electrically and mechanically connecting the opening end of the chamber to the central conductor of the coaxial cable so as to connect the central of the electron source to the central conductor of the coaxial cable.
    Type: Application
    Filed: February 25, 2002
    Publication date: March 20, 2003
    Inventor: Eiji Tanabe
  • Patent number: 6316876
    Abstract: A standing wave accelerator structure that has both inline coupling cavities and side coupling cavities combined into one structure. Additionally, the invention uses a prebunching (re-entrant) cavity, excited electrically or magnetically, through apertures between a first accelerating cavity and the prebunching cavity.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: November 13, 2001
    Inventor: Eiji Tanabe
  • Patent number: 5381072
    Abstract: A standing wave type of microwave linear particle accelerator (40) has a sequence of microwave cavities (42), (43), (44), operated in the standing wave mode, with drift tube conduits (31), (32), (33), between them to permit the passage of a beam of charged particles which are accelerated by the electric fields in each cavity. The first cavity (42) into which the particles enter has a conduit (30) comprising a drift region connected to the particle entrance port (2), outlined by a re-entrant nose (3) extending into the first cavity (42). The drift tube conduit (31) between the first and second cavities (42, 43) has a tapered interior, and the diameter at the upstream end is less than the diameter of the conduit (30) in the re-entrant nose (3) of the first cavity (42). This structure significantly reduces the back bombardment of particles moving backward through the port (2), and increases the efficiency of particle focusing and bunching in the first cavity (42 ).
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: January 10, 1995
    Assignee: Varian Associates, Inc.
    Inventor: Eiji Tanabe
  • Patent number: 4988919
    Abstract: A compact, small diameter, standing-wave linear accelerator structure suitable for industrial and medical applications is disclosed. The novel structure utilizes a new type of coupling cavity for Pi/2 mode, standing-wave operation. The coupling cavity fits into the webs between the accelerating cavities substantially within the diameter of the acclerating cavities. This is made possible by keeping the center section of the cavity thin to concentrate the electric field vector at the center of a section of the cavity and by enlarging the ends of a section of the coupling cavity to accommodate the magnetic field vector. This structure offers a significant reduction in overall diameter over the side-coupled, annular ring, and existing coaxial coupled structures, while maintaining a high shunt impedance and large nearest neighbor coupling (high group velocity). A prototype 4 MeV, 36 cm long, S-band accelerator incorporating the new structure has been built and tested.
    Type: Grant
    Filed: February 8, 1988
    Date of Patent: January 29, 1991
    Assignee: Varian Associates, Inc.
    Inventors: Eiji Tanabe, Matthew Bayer, Mark E. Trail
  • Patent number: 4382208
    Abstract: In a resonant chain of coupled cavities such as used in a standing-wave linear particle accelerator it is often desirable to change the field strength in some cavities relative to some others. For example, if the output particle energy of an accelerator is changed by varying the fields of all cavities, the distribution of energies of output particles is disturbed. This distribution is largely controlled by the fields in the first group of cavities traversed by the particle beam. According to the invention, the fields can remain constant in the first group and be varied in following cavities. This is done by varying the distribution of electromagnetic field in one cavity asymmetrically with respect to the preceding and the following cavity. The asymmetric coupling produces different acceleration fields in one part of acceleration structure relative to another part.
    Type: Grant
    Filed: July 28, 1980
    Date of Patent: May 3, 1983
    Assignee: Varian Associates, Inc.
    Inventors: Gard Meddaugh, Eiji Tanabe, Victor Vaguine