Patents by Inventor EIJI YOSHIHARA

EIJI YOSHIHARA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101962
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Application
    Filed: June 23, 2023
    Publication date: March 28, 2024
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald EVANS, Michael DOWNES, Annette ATKINS, Eiji YOSHIHARA, Ruth YU
  • Patent number: 11760977
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 19, 2023
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald Evans, Michael Downes, Annette Atkins, Eiji Yoshihara, Ruth Yu
  • Patent number: 11685901
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: June 27, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald Evans, Michael Downes, Annette Atkins, Eiji Yoshihara, Ruth Yu
  • Publication number: 20220220446
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Ronald EVANS, Michael DOWNES, Annette ATKINS, Eiji YOSHIHARA, Ruth YU
  • Publication number: 20210363490
    Abstract: The invention features cells, islet-like cells, pancreatic islets and organoids (e.g., human islet-like organoids or HILOs), as well as cell cultures and methods that are useful for the rapid and reliable generation of cells and organoids, such as pancreatic islets and organoids, that are sustainable in vivo and that evade immune detection, rejection and autoimmunity. The invention also features methods of treating pancreatic diseases, such as type 2 diabetes, and pancreatic cancer, using the cells, islet-like cells, pancreatic islets and organoids (e.g., HILOs) that are designed to modulate the activity of immune cells that would otherwise react against them.
    Type: Application
    Filed: October 11, 2019
    Publication date: November 25, 2021
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Eiji YOSHIHARA, Ruth YU, Michael DOWNES, Ronald EVANS, Annette ATKINS
  • Publication number: 20210283187
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: January 5, 2021
    Publication date: September 16, 2021
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 10912800
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 9, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald M. Evans, Eiji Yoshihara, Michael R. Downes, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20190211310
    Abstract: The invention features pancreatic islet and pancreatic organoids, and cell cultures and methods that are useful for the rapid and reliable generation of pancreatic islet and pancreatic islet organoids. The invention also features methods of treating pancreatic diseases and methods of identifying agents that are useful for treatment of pancreatic diseases, such as type 2 diabetes and pancreatic cancer, using the pancreatic islet and pancreatic organoids of the invention.
    Type: Application
    Filed: May 24, 2017
    Publication date: July 11, 2019
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD EVANS, MICHAEL DOWNES, ANNETTE ATKINS, EIJI YOSHIHARA, RUTH YU
  • Publication number: 20180000768
    Abstract: Disclosed are embodiments of a method of treating or preventing latent autoimmune diabetes of adults (LADA) in a subject. Such embodiments include administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or farnesoid X receptor (FXR) agonist compounds, thereby activating FXR receptors in the intestines, and treating or preventing latent autoimmune diabetes of adults (LADA) in the subject.
    Type: Application
    Filed: September 6, 2017
    Publication date: January 4, 2018
    Applicant: Salk Institute for Biological Studies
    Inventors: Sungsoon Fang, Eiji Yoshihara, Ruth T. Yu, Annette Atkins, Michael Downes, Ronald M. Evans
  • Publication number: 20170087189
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 30, 2017
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS
  • Patent number: 9546379
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: January 17, 2017
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Eiji Yoshihara, Michael R. Downes, Ruth T. Yu, Annette R. Atkins
  • Publication number: 20150368667
    Abstract: The invention features compositions comprising in vitro generated beta cells capable of glucose-stimulated insulin secretion, methods of inducing beta cell maturation from embryonic or induced pluripotent stem cell-derived beta-like cells, and methods of using in vitro generated beta cells for the treatment of type 1 diabetes, type 2 diabetes, or a related disorder.
    Type: Application
    Filed: July 7, 2015
    Publication date: December 24, 2015
    Applicant: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: RONALD M. EVANS, EIJI YOSHIHARA, MICHAEL R. DOWNES, RUTH T. YU, ANNETTE R. ATKINS