Patents by Inventor Einar Orn FRIDJONSSON

Einar Orn FRIDJONSSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11549836
    Abstract: A multiphase flow metering device may have a conduit through which a multiphase fluid can flow and a structured packing insert positioned in the conduit. The structured packing insert may have a water-wet packing structure zone and/or an oil-wet packing structure zone. The multiphase flow metering device may also have a Halbach pre-polarizing magnet array positioned around the conduit, an RF coil, an electromagnet, an NMR console adapted to detect NMR signals from the multiphase fluid, and a control system configured to vary a polarization of the Halbach pre-polarizing magnet array. The Halbach pre-polarizing magnet array may be positioned or positionable over one or both of the oil-wet and water-wet packing structure zones. In some embodiments, the structured packing insert may include immobilized radicals, providing for dynamic nuclear polarization of the multiphase fluid.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: January 10, 2023
    Assignees: SAUDI ARABIAN OIL COMPANY, UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Michael Leslie Johns, Masoumeh Zargar, Einar Orn Fridjonsson, Paul Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 11525723
    Abstract: Techniques for measuring fluid properties include circulating a mixed-phase fluid flow through a fluid flow circuit; circulating the mixed-phase fluid flow through a pre-polarizing magnet; polarizing at least a gas phase of the mixed-phase fluid flow to an initial polarization; measuring fluid induction decay (FID) values of the polarized gas phase with the EFNMR detector; determining a velocity of the gas phase based on the FID values of the polarized gas phase; producing a pulsed magnetic field gradient to suppress one or more signals acquired by the EFNMR detector with a first electromagnet; measuring FID values of the liquid phase of the mixed-phase fluid with the EFNMR detector simultaneously with the production of the pulsed magnetic field gradient; producing a homogeneous polarizing field to polarize the liquid phase of the mixed-phase fluid with a second electromagnet; and determining a velocity and content of the liquid phase based on the FID values of the polarized liquid phase.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 13, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220381597
    Abstract: A multiphase flow metering device may have a conduit through which a multiphase fluid can flow and a structured packing insert positioned in the conduit. The structured packing insert may have a water-wet packing structure zone and/or an oil-wet packing structure zone. The multiphase flow metering device may also have a Halbach pre-polarizing magnet array positioned around the conduit, an RF coil, an electromagnet, an NMR console adapted to detect NMR signals from the multiphase fluid, and a control system configured to vary a polarization of the Halbach pre-polarizing magnet array. The Halbach pre-polarizing magnet array may be positioned or positionable over one or both of the oil-wet and water-wet packing structure zones. In some embodiments, the structured packing insert may include immobilized radicals, providing for dynamic nuclear polarization of the multiphase fluid.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Applicants: SAUDI ARABIAN OIL COMPANY, UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Michael Leslie Johns, Masoumeh Zargar, Einar Orn Fridjonsson, Paul Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 11428557
    Abstract: Techniques for measuring liquid properties include circulating a mixed oil-water liquid flow through a fluid flow circuit; polarizing the mixed oil-water liquid flow with a pre-polarizing magnet to an initial polarization; circulating the polarized mixed oil-water liquid flow to an EFNMR detector that includes a radio-frequency (RF) coil and a surrounding electromagnet; further polarizing the polarized mixed oil-water liquid flow with the surrounding electromagnet; measuring fluid induction decay (FID) values of the additionally polarized mixed oil-water liquid flow with the EFNMR detector; transforming the measured FID values to an effective adiabatic transition from the Earth's field to the polarizing field; determining a velocity of the oil in the mixed oil-water liquid flow and a velocity of the water in the mixed oil-water liquid flow based on differences in NMR signal relaxation properties of the transformed FID values; and determining an oil content and a water content of the mixed oil-water liquid flo
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 30, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220065672
    Abstract: Techniques for measuring liquid properties include circulating a mixed oil-water liquid flow through a fluid flow circuit; polarizing the mixed oil-water liquid flow with a pre-polarizing magnet to an initial polarization; circulating the polarized mixed oil-water liquid flow to an EFNMR detector that includes a radio-frequency (RF) coil and a surrounding electromagnet; further polarizing the polarized mixed oil-water liquid flow with the surrounding electromagnet; measuring fluid induction decay (FID) values of the additionally polarized mixed oil-water liquid flow with the EFNMR detector; transforming the measured FID values to an effective adiabatic transition from the Earth's field to the polarizing field; determining a velocity of the oil in the mixed oil-water liquid flow and a velocity of the water in the mixed oil-water liquid flow based on differences in NMR signal relaxation properties of the transformed FID values; and determining an oil content and a water content of the mixed oil-water liquid flo
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220065673
    Abstract: Techniques for measuring fluid properties include circulating a mixed-phase fluid flow through a fluid flow circuit; circulating the mixed-phase fluid flow through a pre-polarizing magnet; polarizing at least a gas phase of the mixed-phase fluid flow to an initial polarization; measuring fluid induction decay (FID) values of the polarized gas phase with the EFNMR detector; determining a velocity of the gas phase based on the FID values of the polarized gas phase; producing a pulsed magnetic field gradient to suppress one or more signals acquired by the EFNMR detector with a first electromagnet; measuring FID values of the liquid phase of the mixed-phase fluid with the EFNMR detector simultaneously with the production of the pulsed magnetic field gradient; producing a homogeneous polarizing field to polarize the liquid phase of the mixed-phase fluid with a second electromagnet; and determining a velocity and content of the liquid phase based on the FID values of the polarized liquid phase.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 10539522
    Abstract: A method for analysis of hydrocarbons in water, the method comprising the steps of: extracting the hydrocarbons from a water sample; introducing the extracted hydrocarbons to a solvent system; determining the relative concentrations of the hydrocarbons in the solvent system and at least one solvent in the solvent system by 1H NMR analysis, wherein the solvent system comprises at least one solvent with a 1H NMR signal distinguishable from a 1H NMR signal of the hydrocarbons.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: January 21, 2020
    Assignees: The University of Western Australia, Chevron U.S.A. Inc.
    Inventors: Eric Freemantle May, Michael Leslie Johns, Matthew Roshan Joseph Carroll, Einar Orn Fridjonsson, Paul Louis Stanwix, Brendan Francis Graham, Christopher John Kalli, Paul Steven Hofman
  • Publication number: 20180143148
    Abstract: A method for analysis of hydrocarbons in water, the method comprising the steps of: extracting the hydrocarbons from a water sample; introducing the extracted hydrocarbons to a solvent system; determining the relative concentrations of the hydrocarbons in the solvent system and at least one solvent in the solvent system by 1H NMR analysis, wherein the solvent system comprises at least one solvent with a 1H NMR signal distinguishable from a 1H NMR signal of the hydrocarbons.
    Type: Application
    Filed: May 16, 2016
    Publication date: May 24, 2018
    Inventors: Eric Freemantle MAY, Michael Leslie JOHNS, Matthew Roshan Joseph CARROLL, Einar Orn FRIDJONSSON, Paul Louis STANWIX, Brendan Francis GRAHAM, Christopher John KALLI, Paul Steven HOFMAN