Patents by Inventor Ekaterina Gotlib Vainshtein

Ekaterina Gotlib Vainshtein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11069918
    Abstract: Electrolytes, lithium ion cells and corresponding methods are provided, for extending the cycle life of fast charging lithium ion batteries. The electrolytes are based on fluoroethylene carbonate (FEC) and/or vinylene carbonate (VC) as the cyclic carbonate component, and possibly on ethyl acetate (EA) and/or ethyl methyl carbonate (EMC) as the linear component. Proposed electrolytes extend the cycle life by factors of two or more, as indicated by several complementary measurements.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: July 20, 2021
    Assignee: StoreDot Ltd.
    Inventors: Zohar Drach, Olga Guchok, Leonid Krasovitsky, Ekaterina Gotlib Vainshtein, Liron Amir
  • Publication number: 20200255557
    Abstract: Li-PAA (lithium poly(acrylic acid)) powders, electrode binders and methods of preparation thereof are provided. The Li-PAA powders have a low PDI (polydispersity index), e.g., smaller than 4 or 5, possibly a high Mw, and are configured to have a lithium content of above 7%, a pH between 8.5 and 9.5, or between 8.7 and 9.1 when dissolved 15% w/w in water and/or possibly a white color. Preparation methods comprise adding a PAA solution into a LiOH solution and stirring a resulting Li-PAA solution, and precipitating Li-PAA from the resulting Li-PAA solution, sieving or filtering and then drying the precipitated Li-PAA to yield the Li-PAA powder, which may be used as binder for forming electrodes. Advantageously, resulting electrodes are uniform and mechanically stable when used with metalloid anode material particles which exhibit high expansion and contraction when used in fast charging lithium ion batteries.
    Type: Application
    Filed: December 12, 2019
    Publication date: August 13, 2020
    Applicant: Storedot Ltd.
    Inventors: Eran SELLA, Maxim KAGAN, Ekaterina GOTLIB VAINSHTEIN
  • Patent number: 10637029
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: April 28, 2020
    Assignee: StoreDot Ltd.
    Inventors: Ekaterina Gotlib Vainshtein, Daniel Aronov
  • Publication number: 20190044180
    Abstract: Electrolytes, lithium ion cells and corresponding methods are provided, for extending the cycle life of fast charging lithium ion batteries. The electrolytes are based on fluoroethylene carbonate (FEC) and/or vinylene carbonate (VC) as the cyclic carbonate component, and possibly on ethyl acetate (EA) and/or ethyl methyl carbonate (EMC) as the linear component. Proposed electrolytes extend the cycle life by factors of two or more, as indicated by several complementary measurements.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Applicant: StoreDot Ltd.
    Inventors: Zohar Drach, Olga Guchok, Leonid Krasovitsky, Ekaterina Gotlib Vainshtein, Liron Amir
  • Patent number: 10199677
    Abstract: Electrolytes, lithium ion cells and corresponding methods are provided, for extending the cycle life of fast charging lithium ion batteries. The electrolytes are based on fluoroethylene carbonate (FEC) and/or vinylene carbonate (VC) as the cyclic carbonate component, and possibly on ethyl acetate (EA) and/or ethyl methyl carbonate (EMC) as the linear component. Proposed electrolytes extend the cycle life by factors of two or more, as indicated by several complementary measurements.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 5, 2019
    Assignee: StoreDot Ltd.
    Inventors: Zohar Drach, Olga Guchok, Leonid Krasovitsky, Ekaterina Gotlib Vainshtein, Liron Amir
  • Publication number: 20180261819
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 13, 2018
    Applicant: StoreDot Ltd.
    Inventors: Ekaterina GOTLIB VAINSHTEIN, Daniel ARONOV
  • Patent number: 10033023
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 24, 2018
    Assignee: StoreDot Ltd.
    Inventors: Ekaterina Gotlib Vainshtein, Daniel Aronov
  • Publication number: 20180175355
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 21, 2018
    Applicant: STOREDOT LTD.
    Inventors: Ekaterina GOTLIB VAINSHTEIN, Daniel ARONOV
  • Patent number: 10003060
    Abstract: Methods, stacks and electrochemical cells are provided, in which the cell separator is surface-treated prior to attachment to the electrode(s) to form binding sites on the cell separator and enhance binding thereof to the electrode(s), e.g., electrostatically. The cell separator(s) may be attached to the electrode(s) by cold press lamination, wherein the created binding sites are configured to stabilize the cold press lamination electrostatically—forming flexible and durable electrode stacks. Electrode slurry may be deposited on a sacrificial film and then attached to current collector films, avoiding unwanted interactions between materials and in particular solvents involved in the respective slurries. Dried electrode slurry layers may be pressed or calendared against each other to yield thinner, smother and more controllably porous electrodes, as well as higher throughput. The produced stacks may be used in electrochemical cells and in any other type of energy storage device.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: June 19, 2018
    Assignee: StoreDot Ltd.
    Inventors: Ekaterina Gotlib Vainshtein, Daniel Aronov