Patents by Inventor Elain S. Fu

Elain S. Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11098346
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 24, 2021
    Assignee: University of Washington
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Publication number: 20190134637
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Application
    Filed: August 9, 2018
    Publication date: May 9, 2019
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Publication number: 20180326418
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a base configured to receive one or more fluids, a porous wick carried by the base portion, and a flow-metering element along the porous wick to modify a rate or volume of fluid flow along the porous wick. The porous wick can comprise a first pathway, a second pathway, and an intersection at which the first pathway and the second pathway converge. Input ends of the first and second pathways can be wettably distinct. Upon wetting of the input ends, fluid is configured to travel by capillary action along each pathway. The device may also include volume-metering features configured to automatically and independently control or modify a volume of fluid flow along one or more pathways of the porous wick.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 15, 2018
    Applicant: University of Washington
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Peter C. Kauffman
  • Patent number: 9528987
    Abstract: The present technology describes various embodiments of devices for processing, analyzing, detecting, measuring, and separating fluids. The devices can be used to perform these processes on a microfluidic scale, and with control over fluid and reagent transport. In one embodiment, for example, a device for performing chemical processes can include a porous wick comprising a pathway defined by an input end, an output end, and a length between the input end and the output end. The pathway is configured to wick fluid from the input end to the output end by capillary action. The device can further include a reagent placed on the pathway. The reagent can be placed in a pattern configured to control a spatial or temporal distribution of the reagent along the pathway upon wetting of the pathway.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 27, 2016
    Assignee: University of Washington
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Gina Fridley, Huy Quang Le, Peter C. Kauffman
  • Publication number: 20150361487
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a porous receiving element having an input region and a receiving region, a first fluid source and a second fluid source positioned within the input region of the receiving element; wherein the first fluid source is positioned between the second fluid source and the receiving region, and wherein, when both the first and second fluid sources are in fluid connection with the input region, the device is configured to sequentially deliver the first fluid and the second fluid to the receiving region without leakage.
    Type: Application
    Filed: January 22, 2014
    Publication date: December 17, 2015
    Inventors: Joshua Bishop, Joshua Buser, Samantha Byrnes, Shivani Dharmaraja, Elain S. Fu, Jared Houghtaling, Peter C. Kauffman, Sujatha Kumar, Lisa Lafleur, Tinny Liang, Barry Lutz, Bhushan Toley, Maxwell Wheeler, Paul Yager, Xiaohong Zhang
  • Publication number: 20140227707
    Abstract: The present technology describes various embodiments of devices for processing, analyzing, detecting, measuring, and separating fluids. The devices can be used to perform these processes on a microfluidic scale, and with control over fluid and reagent transport. In one embodiment, for example, a device for performing chemical processes can include a porous wick comprising a pathway defined by an input end, an output end, and a length between the input end and the output end. The pathway is configured to wick fluid from the input end to the output end by capillary action. The device can further include a reagent placed on the pathway. The reagent can be placed in a pattern configured to control a spatial or temporal distribution of the reagent along the pathway upon wetting of the pathway.
    Type: Application
    Filed: June 25, 2012
    Publication date: August 14, 2014
    Applicant: University of Washington Through itsCenter for Com
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Gina Fridley, Huy Quang Le, Peter C. Kauffman
  • Publication number: 20140093980
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a source configured to receive one or more fluids, a first material adjacent to and in fluid connection with the source, a second material, and a dissolvable volume-metering element positioned between the first material and the second material. The volume-metering element can be configured to provide a fluid connection between the first material and the second material. The volume-metering element can also be configured to at least partially dissolve and break the fluid connection between the first material and second material once a predetermined volume of fluid flows therethrough.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 3, 2014
    Inventors: Elain S. Fu, Barry Lutz, Jared Houghtaling, Tinny Liang
  • Publication number: 20120288961
    Abstract: The present technology is directed to capillarity-based devices for performing chemical processes and associated system and methods. In one embodiment, for example, a device can include a base configured to receive one or more fluids, a porous wick carried by the base portion, and a flow-metering element along the porous wick to modify a rate or volume of fluid flow along the porous wick. The porous wick can comprise a first pathway, a second pathway, and an intersection at which the first pathway and the second pathway converge. Input ends of the first and second pathways can be wettably distinct. Upon wetting of the input ends, fluid is configured to travel by capillary action along each pathway. The device may also include volume-metering features configured to automatically and independently control or modify a volume of fluid flow along one or more pathways of the porous wick.
    Type: Application
    Filed: December 21, 2010
    Publication date: November 15, 2012
    Applicant: University of Washington
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Peter C. Kauffman
  • Patent number: 7659089
    Abstract: The invention provides a method, apparatus and system for detecting electrochemical oxidoreduction activity mediated by a redox enzyme at a site remote from the enzyme. In one embodiment, the method comprises immobilizing the redox enzyme on a first region of a conductive surface and contacting a substrate capable of producing a detectable signal upon oxidation or reduction with a second region of the conductive surface. The second region is electrically coupled with the first region and the redox enzyme is not present in the second region. The method further comprises exposing the immobilized redox enzyme to conditions that effect oxidation or reduction of the enzyme, and detecting oxidation or reduction of the substrate at the second region. The invention can be adapted for detecting a plurality of analytes.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 9, 2010
    Assignee: University of Washington
    Inventors: Melissa S. Hasenbank, Elain S. Fu, Paul Yager
  • Publication number: 20080153121
    Abstract: The invention provides a method, apparatus and system for detecting electrochemical oxidoreduction activity mediated by a redox enzyme at a site remote from the enzyme. In one embodiment, the method comprises immobilizing the redox enzyme on a first region of a conductive surface and contacting a substrate capable of producing a detectable signal upon oxidation or reduction with a second region of the conductive surface. The second region is electrically coupled with the first region and the redox enzyme is not present in the second region. The method further comprises exposing the immobilized redox enzyme to conditions that effect oxidation or reduction of the enzyme, and detecting oxidation or reduction of the substrate at the second region. The invention can be adapted for detecting a plurality of analytes.
    Type: Application
    Filed: March 11, 2008
    Publication date: June 26, 2008
    Applicant: University of Washington
    Inventors: Melissa S. Hasenbank, Elain S. Fu, Paul Yager
  • Patent number: 7364886
    Abstract: The invention provides a method, apparatus and system for detecting electrochemical oxidoreduction activity mediated by a redox enzyme at a site remote from the enzyme. In one embodiment, the method comprises immobilizing the redox enzyme on a first region of a conductive surface and contacting a substrate capable of producing a detectable signal upon oxidation or reduction with a second region of the conductive surface. The second region is electrically coupled with the first region and the redox enzyme is not present in the second region. The method further comprises exposing the immobilized redox enzyme to conditions that effect oxidation or reduction of the enzyme, and detecting oxidation or reduction of the substrate at the second region. The invention can be adapted for detecting a plurality of analytes.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 29, 2008
    Assignee: University of Washington
    Inventors: Melissa S. Hasenbank, Elain S. Fu, Paul Yager
  • Patent number: 7030989
    Abstract: This invention provides methods, devices and device components for sensing, imaging and characterizing changes in the composition of a probe region. More particularly, the present invention provides methods and devices for detecting changes in the refractive index of a probe region positioned adjacent to a sensing surface, preferably a sensing surface comprising a thin conducting film supporting surface plasmon formation. In addition, the present invention provides methods and device for generating surface plasmons in a probe region and characterizing the composition of the probe region by generating one or more surface plasmon resonances curves and/or surface plasmon resonance images of the probe region.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 18, 2006
    Assignee: University of Washington
    Inventors: Paul Yager, Elain S. Fu
  • Publication number: 20040130723
    Abstract: This invention provides methods, devices and device components for sensing, imaging and characterizing changes in the composition of a probe region. More particularly, the present invention provides methods and devices for detecting changes in the refractive index of a probe region positioned adjacent to a sensing surface, preferably a sensing surface comprising a thin conducting film supporting surface plasmon formation. In addition, the present invention provides methods and device for generating surface plasmons in a probe region and characterizing the composition of the probe region by generating one or more surface plasmon resonances curves and/or surface plasmon resonance images of the probe region.
    Type: Application
    Filed: October 28, 2003
    Publication date: July 8, 2004
    Inventors: Paul Yager, Elain S. Fu