Patents by Inventor Elena de Castro Hernàndez

Elena de Castro Hernàndez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180001282
    Abstract: An apparatus for mass producing monodisperse microbubbles includes a microfluidic flow focusing device, which includes a dispersed phase fluid supply channel having an outlet that discharges into a flow focusing junction, a continuous phase fluid supply channel having an outlet that discharges into the flow focusing junction, and a bubble formation channel having an inlet disposed at the flow focusing junction. The configuration of the flow focusing junction is such that, in operation, a flow of dispersed phase fluid discharging from the outlet of the dispersed phase fluid supply channel is engageable in co-flow by a focusing flow of continuous phase fluid discharging from the outlet of the at least one continuous phase fluid supply channel under formation of a gradually thinning jet of dispersed phase fluid that extends into the inlet of the bubble formation channel.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Inventors: Willem van Hoeve, Elena de Castro Hernández, José Manuel Gordillo Arias de Saveedra, Andreas Michael Versluis, Detlof Lohse
  • Patent number: 9782733
    Abstract: An apparatus for mass producing monodisperse microbubbles contains a microfluidic flow focusing device. The microfluidic flow focusing device includes a dispersed phase fluid supply channel having an outlet that discharges into a flow focusing junction, a continuous phase fluid supply channel having an outlet that discharges into the flow focusing junction, and a bubble formation channel having an inlet disposed at the flow focusing junction. The configuration of the flow focusing junction is such that, in operation, a flow of dispersed phase fluid discharging from the outlet of the dispersed phase fluid supply channel is engageable in co-flow by a focusing flow of continuous phase fluid discharging from the outlet of the at least one continuous phase fluid supply channel under formation of a gradually thinning jet of dispersed phase fluid that extends into the inlet of the bubble formation channel.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 10, 2017
    Assignees: UNIVERSITEIT TWENTE, UNIVERSIDAD DE SEVILLA
    Inventors: Willem van Hoeve, Elena de Castro Hernàndez, José Manuel Gordillo Arias de Saavedra, Andreas Michael Versluis, Detlef Lohse
  • Publication number: 20150125400
    Abstract: An apparatus for mass producing monodisperse microbubbles contains a microfluidic flow focusing device. The microfluidic flow focusing device includes a dispersed phase fluid supply channel having an outlet that discharges into a flow focusing junction, a continuous phase fluid supply channel having an outlet that discharges into the flow focusing junction, and a bubble formation channel having an inlet disposed at the flow focusing junction. The configuration of the flow focusing junction is such that, in operation, a flow of dispersed phase fluid discharging from the outlet of the dispersed phase fluid supply channel is engageable in co-flow by a focusing flow of continuous phase fluid discharging from the outlet of the at least one continuous phase fluid supply channel under formation of a gradually thinning jet of dispersed phase fluid that extends into the inlet of the bubble formation channel.
    Type: Application
    Filed: March 22, 2012
    Publication date: May 7, 2015
    Applicants: UNIVERSIDAD DE SEVILLA, UNIVERSITEIT TWENTE
    Inventors: Willem van Hoeve, Elena de Castro Hernàndez, José Manuel Gordillo Arias de Saavedra, Andreas Michael Versluis, Detlef Lohse
  • Publication number: 20090215154
    Abstract: The invention relates to a method of obtaining micro- and nanometric polymeric particles in a controlled, reproducible manner. The aforementioned particles have a spherical shape and a very narrow, uniform size distribution. The invention comprises the use of an easy particle-forming method consisting in using hydrodynamic forces to focus a composite microjet formed by two concentric fluids and can be used in the encapsulation of fragile compounds of biological interest, from peptides and proteins to cells and micro-organisms.
    Type: Application
    Filed: May 3, 2006
    Publication date: August 27, 2009
    Inventors: Miguel Alfonso Ganan Calvo, Sebastien Chavez De Diego, Angel Cebolla Ramirez, Maria Flores Mosquera, Elena De Castro Hernandez